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Abstract

We present Cacheback Decoding, a training-
free and model-agnostic speculative decoding
method that exploits the locality in language to
accelerate Large Language Model (LLM) infer-
ence. Cacheback leverages only Least Recently
Used (LRU) cache tables of token n-grams to
generate draft sequences. Cacheback achieves
state-of-the-art performance among compara-
ble methods despite its minimalist design, and
its simplicity allows easy integration into exist-
ing systems. Cacheback also shows potential
for fast adaptation to new domains.

1 Introduction

Cache Language Models (CLMs), notable innova-
tions from the 1990s ( , ),
enhanced the predictive capabilities of n-gram mod-
els. They store recently observed n-grams in a
cache. Using the cache table, they modify the prob-
abilities assigned by the base n-gram model to favor
n-grams present in the cache, effectively exploiting
the linguistic phenomenon of “burstiness,” i.e., the
increased likelihood of recently used words reap-
pearing.

With the subsequent rise of Large Language
Models (LLMs), whose massive parameterization
enables them to capture complex, long-distance
contextual patterns, the original purpose of CLMs
appears to have been superseded. However, we
re-examine the utility of caching not to improve the
intrinsic modeling power of already potent LLMs,
but as a surprisingly effective tool for a different
objective: accelerating LLM generative inference.

We present Cacheback Decoding, a novel
method that repurposes the CLM concept for the
modern challenge of Speculative Decoding (SD).
In the SD framework ( , ), a
faster mechanism proposes a sequence of draft to-
kens, which the LLM then attempts to validate in a
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single forward pass, potentially accepting multiple
tokens at once and thereby reducing overall latency.
Cacheback generates these drafts without auxiliary
neural models or complex algorithmic procedures.

Cacheback’s drafting mechanism is extremely
simple: It maintains a cache table with the Least Re-
cently Used (LRU) eviction policy. This table maps
a tuple of leading tokens to a set of tuples of im-
mediately following tokens most recently observed
after the leading ones in the ongoing generation pro-
cess or recent context. Cacheback generates a tree
of draft tokens by recursively querying the cache
table using the last few tokens in a tree branch as
the key and retrieving the follower tokens to grow
the tree. This draft generation step is lightweight,
typically executing in microseconds, thus imposing
negligible overhead on the decoding loop.

Our empirical evaluations on the SpecBench
benchmark ( , ) demonstrate that
Cacheback, despite its minimalist design, achieves
state-of-the-art performance in wall-clock speedup
and token acceptance ratio among comparable base-
lines that do not require draft model training or
model architecture modifications. The effective-
ness of Cacheback suggests avenues for future
work, including dynamic cache scaling and rapid
domain adaptation for draft generation, a tradi-
tional strength of CLMs.

2 Background and Related Work

2.1 Exploiting Locality in Language Modeling

The principle of locality, referring to the tendency
for related words to appear in close proximity, is a
universal characteristic of both artificial (e.g., pro-
gramming languages) and natural languages. This
phenomenon is theoretically grounded in informa-
tion theory. As ( ) posits, if we
consider the limitations of human information pro-
cessing and the constraints of short-term memory,
then efficient languages are expected to favor lo-



cal information structures. That is, words that are
linked in meaning or usage should occur near each
other. This inherent locality can be effectively ex-
ploited using surprisingly simple mechanisms like
caching. CLMs were pioneering in this regard, in-
tegrating n-gram caches to enhance language mod-
eling quality by re-weighting probabilities from a
base n-gram model. Despite their simplicity, CLMs
demonstrated significant empirical efficacy, achiev-
ing perplexity reductions of 38% to 50% in tasks
like speech recognition ( , ;

, ), which led to their popu-
larity in the 1990s.

2.2 Speculative Decoding

Speculative Decoding (SD) is a lossless method
to accelerate LLM inference by using a faster
draft mechanism, or drafter, to predict future to-
kens ( , ). The LLM then
validates these candidates in one forward pass in
parallel, potentially accepting multiple tokens at
once to reduce generation latency. SD methods
vary based on whether the approach requires a spe-
cific model (model-dependent vs. model-agnostic)
and whether the drafter requires training (training-
required vs. training-free). Some SD approaches
use an off-the-shelf smaller model in a model
family as the drafter ( , ) and thus
are model-dependent and training-free. Distill-
Spec ( , ) trains a distilled drafter
given any model, so the approach is model-agnostic
but training-required. Methods like EAGLE (

, ) and MEDUSA ( , ) mod-
ify the LLM by adding auxiliary components, mak-
ing them model-dependent and training-required.
Recently, SD methods that are both model-agnostic
and training-free are favored for their plug-and-
play convenience and broad applicability. They
often leverage heuristics, small pre-trained models,
or prompt and history information, such as looka-

head strategies ( , ; , )
prompt-based lookups ( , ), or online
draft construction ( , ).

3 Cacheback Decoding

We propose Cacheback, a simple yet effective spec-
ulative decoding method that leverages cache tables
to exploit the locality in language for speedup. The
table caches previously seen n-grams, divided into
a leader part and a follower part (§3.1). When
queried with a leader, the table returns a list of fol-
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Figure 1: Cacheback’s cache table structure. Each
leader is associated with a list of followers. Entries
are evicted using the least recently used (LRU) policy.

lowers that have previously appeared immediately
after the leader. At each decoding step, Cacheback
generates a tree of draft tokens by recursively
querying the cache table and verifies them in paral-
lel with one forward pass of the LLM (§3.2). Our
strategy follows the intuition that n-grams which
have recently appeared are likely to reappear. Af-
ter the LLM forward pass, Cacheback updates the
cache table to include new n-grams from accepted
tokens, evicting stale entries with the least recently
used (LRU) policy if necessary. To avoid the cold-
start problem, Cacheback initializes the cache table
with frequent n-grams observed in large training
corpora (§3.3). Despite being a simple method,
Cacheback achieves superior or comparable perfor-
mance to many sophisticated model-agnostic and
training-free methods developed in recent years
(§4.

We have open-sourced the implementation of
Cacheback with integration into the SpecBench
benchmark suite.” We have also hosted the binary
artifacts, i.e., frozen cache tables (§3.3), on Hug-
ging Face for public access.

3.1 Cache Table Structure

As shown in , the cache table has a simple
structure in which the leaders and followers are
both tuples of tokens (i.e., n-grams) and can be
of different lengths, denoted by the leader length
(LL) and follower length (FL). The table associates
each leader with a list of followers. When queried
with a leader, the table returns the associated fol-
lowers, or an empty list if the leader is absent. The
maximum number of leaders in a table and the
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maximum number of followers per leader are de-
noted by the leader capacity (LC) and the follower
capacity (FC), respectively.

The table updates its entries by accepting a
leader-follower pair. The table first checks if the
leader exists in the table. If not, the table creates a
new entry for the leader and initializes the follower
list with the new follower. Otherwise, the table
appends the new follower to the existing follower
list if the follower is not already present.

When the number of leaders exceeds LC, the
table evicts the least recently used (LRU) leader
and its followers upon inserting a new leader. Both
querying and inserting a leader update that leader’s
recency. Likewise, if the number of followers of
a leader exceeds FC, the table evicts the leader’s
LRU follower. A notable difference is that the table
updates a follower’s recency only upon insertion.
Also, a follower compares its recency only against
followers of the same leader.

The simplicity of the cache table structure en-
ables fast lookup, insertion, and eviction. For
lookup, the table uses hash maps to locate lead-
ers and followers. For insertion and eviction, the
table organizes leaders and followers in each LRU
domain using doubly linked lists, where items in
a list are ordered by recency. Therefore, the time
complexity of lookup, insertion, and eviction oper-
ations is O(1).

Standard libraries can readily support the con-
struction of the table thanks to its simple struc-
ture. Our prototype implementation simply uses
the OrderedDict type provided by Python.

The memory consumption of the cache table
can be estimated by counting the maximum num-
ber of tokens retained by the table, bounded by
O(LL - LC - FL - FC). An ordered hash table
like OrderedDict needs extra memory to maintain
metadata including the bucket status and to store
pointers in each linked element, but the asymptotic
bound remains the same.

3.2 Draft Generation and Validation

Cacheback generates a tree of draft tokens by re-
cursively querying the cache table. shows
an example of a draft tree generated for the prefix
tokens “At dawn the fox” using a cache table where
LL =2 and FL = 2. We use a word to represent
a token for illustrative purposes. Tokens that are
not KV-cached are those that were just accepted
in the last decoding step. In the first draft gener-
ation iteration, Cacheback queries the table with

KV-cached Non-KV-cached Drafts

At dawn the fox& hid deep ™ on hill

Step x < ran fast Y in grass — and saw
sat still — in fog

| the fox | — | ran fast | |hid deep| | sat still |

| ran fast | — | in grass | | on hill | |

|
|ingrass|—|andsaw|| || |
| | |

| satstill | — | infog ||

Step x+1 (accepted tokens underlined)
At dawn the fox sat still in den— - - 1

o
f————

[P Table update inputs
f————— f—

Figure 2: Overview of decoding steps. Cacheback gen-
erates a draft tree by recursively querying the cache table
and verifies it in one forward pass of the LLM using
tree attention. In this example, the last draft branch ex-
cept its last token is accepted. Cacheback subsequently
updates the cache table with the accepted tokens over a
sliding window.

the last two tokens in the sequence (“the fox™) and
receives the list of followers containing “ran fast,”
“hid deep,” and “sat still.” In subsequent iterations,
Cacheback attempts to grow the tree from its leaf
nodes, querying the table with the last LL tokens
of the sequence when following the path from the
root to a leaf node. The growth of the draft token
tree follows a breadth-first-search pattern. Draft
generation stops when either none of the leaf nodes
has a follower in the cache table or the size of
the tree reaches a predefined threshold. We call
this threshold the total draft length (TDL), which
counts the number of draft tokens plus the number
of non-KV-cached tokens.

Cacheback further introduces the chaining-
reserved tokens (CRT) parameter to control the
width versus depth of the tree. CRT denotes the
number of draft tokens reserved for the second or
deeper level of the tree. Without setting CRT, a
draft tree can become wide enough that its first
level exhausts TDL.

Cacheback employs tree attention to efficiently
validate the draft tokens in one forward pass of the
LLM. Cacheback builds a custom attention mask
in which a token attends only to its ancestor tokens
in the draft tree. The LLM can then validate all
branches of the tree in parallel as one input. A
custom GPU kernel may further improve the per-



formance of Cacheback. We leave this as a future
direction to explore.

An LLM forward pass always generates one
more token in addition to the accepted tokens from
the draft. Therefore, a decoding step generates one
token in the worst case when it accepts no draft
token, or one plus the longest branch length in the
best case.

At the end of each decoding step, Cacheback
updates the cache table with a sliding window over
the accepted tokens, as shown in . The win-
dow captures all newly observed leader-follower
pairs generated by the recent step.

3.3 Table Initialization

Cacheback employs a dual-table approach to im-
prove cold-start performance. In addition to the
dynamic cache table just described, Cacheback
prepares an additional frozen table offline, fill-
ing it with frequent leader-follower pairs observed
in large training corpora. In each decoding step,
Cacheback first queries the dynamic table to form
the draft tree and then the frozen one to further
grow the tree if TDL still allows. The frozen table
disregards insertions during decoding, and only the
dynamic table is updated with accepted tokens.

Moreover, at the beginning of each decoding
task, Cacheback initializes the dynamic table with
a sliding window over the prompt to populate it
with the input context.

4 Experiment

We conduct experiments on a desktop machine with
an AMD Ryzen 5965WX CPU and four NVIDIA
RTX 4090 GPUs. We use one, two, and four GPUs
to run the Vicuna 7B, 13B, and 33B models, re-
spectively.

To compare the performance of Cacheback
against other training-free model-agnostic meth-
ods, we use the SpecBench ( , ) testing
framework and dataset. We modify SpecBench in
two ways to ensure fairness among evaluated meth-
ods. First, for stateful methods, including SAM
Decoding ( , ), Token Recycling (

, ), and our approach, we reset the state
object before running each test case. Second, we
build the static automaton as described in the SAM
repository (Hu, ) and include it when running
SAM on SpecBench. We also fix the SpecBench
implementation of Retrieval-based Speculative De-
coding (REST) ( , ) and Token Recy-

cling so that the code can run with multiple GPUs.

For Cacheback, we configure the cache table
with LL =1, LC =22, FL = 3, FC = 128, TDL =
96, and CRT = 16. We pick these values empirically
for the best performance. We configure LC to be
large to reduce the cache-miss rate and FC to be
large to saturate TDL. With our configurations, a
fully populated table uses at most a few GiB of
DRAM, as analyzed in §

We build the frozen table by randomly sampling
1% of the OpenWebText dataset ( ,

). The building procedure first picks the most
frequent LC n-grams of length LL as the leaders
in the table. Then, for each leader, it selects the
most frequent FC n-grams of length FL that appear
after the leader in the dataset for inclusion in the
follower list.

As shown in , despite being simple,
Cacheback is on par with SAM Decoding based
on suffix automata. Furthermore, Cacheback out-
performs Prompt Lookup Decoding (PLD) (

, ) that runs brute-force string matching,
Lookahead Decoding (Lookahead) ( , )
that employs parallel Jacobi iteration, REST that
leverages a database, and Token Recycling that con-
structs an adjacency matrix to generate drafts. We
note that the testing framework currently cannot
run the Lookahead method with multiple GPUs.
Our results demonstrate that simpler methods can
be just as effective as more sophisticated ones.

Notably, the translation task is particularly chal-
lenging for all evaluated SD methods. This is
partly because the generated words have very little
relevance to the input context at the token level.
Cacheback’s lead in the translation domain demon-
strates that our approach can effectively leverage
language locality in the output text for speedup,
suggesting its rapid adaptation to a new domain
and its effectiveness for low-resource languages for
which training a draft model is difficult.

We observe that the performance of Cacheback
exhibits an interesting pattern across different set-
tings of LL and FL, as shown in , which
plots the average speedup ratio of Cacheback on
SpecBench with Vicuna 7B while varying these
two parameters. In this figure, we set LC, FC,
TDL, and CRT to the same values as before, but
the trend remains the same with other configura-
tions of these parameters. Cacheback consistently
achieves the best performance when LL is set to
1 and FL is around 3. It may seem counterintu-
itive at first that Cacheback runs fastest when LL
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Figure 4: Speedup ratio of Cacheback on SpecBench
running Vicuna 7B with different LL and FL settings.

= 1. However, Cacheback’s effectiveness is partly
attributable to having multiple draft candidates in
a tree, which increases the probability that some
draft tokens are accepted. With LL = 1, the cache
table can return more candidate followers with re-
cent occurrences. Meanwhile, FL. = 3 strikes the
best balance between the number of drafts and draft
length. A greater number of drafts increases the
probability that at least some tokens from a draft
will be accepted. On the other hand, if a draft is
very accurate, increasing draft length will result in
more tokens being accepted in a step.

Finally, we demonstrate in Table 1 that the
dual-table approach is essential for Cacheback to
achieve good performance. Without the frozen ta-
ble, both the mean accepted tokens (MAT) and the
speedup ratio drop significantly due to the cold-
start problem. Moreover, since the frozen table
cannot reflect the specific context of a decoding
loop, using it alone is also suboptimal.

Configuration Speedup MAT Token/s
Dual 1.86x 242 103.71
No Frozen 1.64x 196 91.32
Only Frozen 1.28x  1.59 68.11

Table 1: Speedup ratio, mean accepted tokens (MAT),
and average token generation speed of Cacheback run-
ning SpecBench with Vicuna 7B under different table
configurations. The dual-table approach is necessary for
good performance.

5 Conclusion

We propose Cacheback Decoding, a simple yet ef-
fective speculative decoding method that leverages
LRU cache tables to exploit the locality in language
to accelerate LLM inference. Our results show that
Cacheback achieves superior or comparable perfor-
mance to many sophisticated training-free model-
agnostic methods. Due to its simplicity, Cacheback
can be easily integrated into existing LL.M frame-
works. Moreover, because Cacheback organizes
draft tokens as a tree, it can be combined with
other SD methods for further speedup by inserting
their predicted drafts as additional branches, simi-
lar to the combination of SAM decoding and EA-
GLE (Hu et al., 2024). Finally, with Cacheback’s
inherited strengths from CLMs, our approach ex-
hibits rapid adaptation to specific domains, as evi-
denced by its strong performance in translation.
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Limitations

Our exploration of Cacheback has several remain-
ing areas for investigation. The impact of different
corpora for initializing the frozen table remains
unstudied, as does performance variation across
different GPU architectures and LLM models. Ad-
ditionally, our evaluation is currently limited to
the SpecBench dataset, which may not represent
all possible use cases. Moreover, the performance
of Cacheback exhibits sensitivity to configuration
parameters, with optimal settings likely varying
across different tasks, language models, and hard-
ware configurations. A theoretical analysis of these
parameters is still lacking, and developing an auto-
matic parameter tuning method would be valuable.
We leave these investigations for future work.
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