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Abstract— Is it possible to migrate TCP/IP flows between different networks on modern mobile devices without infrastructure 
support or protocol changes? To answer this question, we make three research contributions. (i) We report a comprehensive 
characterization of IP traffic on 27 iPhone 3GS users for three months. (ii) Driven by these findings, we devise two simple, 
effective, and easily deployable system mechanisms to support seamless flow migration without network support, and 
extensively evaluate their effectiveness using our field collected traces of real-life usage. Wait-n-Migrate leverages the fact that 
most flows are short lived. It establishes new flows on newly available networks but allows pre-existing flows on the old network 
to terminate naturally. Resumption Agent takes advantage of the resumption functionality of modern protocols to securely 
resume flows without application intervention. Combined, they provide an unprecedented opportunity to immediately deploy 
policies that leverage multiple networks to improve the performance, efficiency, and connectivity of mobile devices. (iii) We 
report an iPhone based implementation of these system mechanisms and demonstrate their overhead to be negligible. 
Furthermore, we employ a sample switching policy, AutoSwitch, to demonstrate their performance. Through traces and field 
measurements, we show that AutoSwitch reduces user disruptions by an order of magnitude.  

Index Terms—Mobile Computing, Network Architecture and Design, User/Machine Systems  

——————————      —————————— 

I. INTRODUCTION 
Modern mobile devices have access to multiple networks. 
Not only do they have multiple network interfaces, such 
as cellular and Wi-Fi, but also a single interface may 
access multiple networks, such as Wi-Fi hotspots from 
different providers. Over time, the networks available to a 
mobile device and their qualities vary greatly, e.g. as the 
user moves. A large body of recent work attests to the 
value of properly switching between networks [1, 2] or 
aggregating them [3, 4]. Switching between networks can 
significantly improve the performance [5, 6], energy effi-
ciency [1, 7], and connectivity [8] of mobile Internet. In 
this work, we focus not on policies, but mechanisms to ena-
ble switching and/or aggregating networks on smart-
phones. 
The key to switching between networks or aggregating 
them is to change the network for existing flows without 
disrupting their corresponding applications. Brute-force 
switching between networks, where one network is simp-
ly disabled and another enabled, may lead to undesirable 
disruptions, as our own experience corroborates and as 
confirmed by our user study. Solutions to this problem 
are available in the name of handoff. Some require infra-
structure or home agent support, e.g. cellular handoff, 

connection gateway, and Mobile IP, which incur extra 
operating expenses and additional latency [9]. Others 
require changing the TCP/IP protocol, which has been 
shown to be practically very difficult. Not surprisingly, 
no automatic switching or aggregating solutions have 
been widely deployed in practice.  
The important question this paper addresses is the fol-
lowing: On modern mobile devices, is it possible to seam-
lessly migrate TCP/IP flows between different networks 
without infrastructure support or protocol changes? To-
ward answering this question, this paper presents three 
research contributions. 
First, we report a comprehensive characterization of net-
work traffic on smartphones using three-month traces 
collected from 27 iPhone 3GS users. The characterization 
provides key insights into the motivation and rationale of 
our mechanisms. In particular, we have found that net-
work flows are typically short-lived and utilize standard 
protocols, long-lived flows are often predictable and au-
tomatically reconnect upon disruption, and that there are 
few concurrent flows during interactive usage. 
Second, we present and extensively evaluate two novel 
system mechanisms implemented in a smartphone to mi-
grate flows between networks without network support 
and without disruption to the user. The first mechanism, 
Wait-n-Migrate, takes advantage of the fact that TCP flows 
are short-lived. It establishes new flows on the new net-
work, but waits for the pre-existing flows on the old net-
work to terminate normally, up to a specific wait-time set 
by the migration policy. The second mechanism, Resump-
tion Agent, leverages the resume function in modern serv-
ers and resumes a flow from wherever it was disrupted, 
in a manner transparent to applications. Based on our 
traces, we show that using Wait-n-Migrate, we can suc-
cessfully migrate web flows for 90% and 95% of cases, for 
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wait-time values of 10 and 100 seconds, respectively. 
With the addition of Resumption Agent, we show that for 
web flows that support resuming, we can virtually elimi-
nate disruptions when switching between networks.  
Third, we report an efficient implementation of the Wait-
n-Migrate and Resumption Agent mechanisms on the 
iPhone platform, and show that their overhead is negligi-
ble. Based on the two system mechanisms, we further 
implement a sample network interface switching policy, 
AutoSwitch. AutoSwitch uses Wait-n-Migrate and Re-
sumption Agent to offload data from cellular to Wi-Fi as 
much as possible, with minimum disruptions to the user. 
AutoSwitch using Wait-n-Migrate alone achieves over 
one order of magnitude reduction in the number of dis-
ruptions in our real-life traces, and from over 40% to well 
under 10% for 100 KB transfers while driving. Further-
more, when the content supports resuming, disruptions 
are almost entirely eliminated with the addition of Re-
sumption Agent. 
The rest of this paper is organized as follows. In Section 
II, we present a motivational user study to show that 
brute force network switching is unacceptable to users, 
and then discuss related work. In Section III, we present 
the characterization of network traffic on 27 iPhone 3GS 
users and provide insight to the characteristics of network 
flows on modern smartphones. Based on these findings, 
in Section IV, we present the design and trace-based 
evaluation of Wait-n-Migrate and Resumption Agent. In 
Section V, we report their implementation on iPhone and 
evaluate their performance impact. In Section VI, we 
present an example application, AutoSwitch, of the result-
ing seamless flow migration without network support. 
Finally, we discuss methods to further enhance our me-
chanisms for increased performance in Section VII, and 
conclude in Section VIII. 

II. BACKGROUND 
A. Consequences of Brute-Force Switching 
Without network support, smartphones switch between 
networks (e.g. cellular and Wi-Fi) in a brute-force man-
ner: They terminate all application flows on the old net-
work and enable the new network. This behaviour is 
shared across all the three major smartphone platforms 
we studied: iOS, Android, and Windows Mobile1. It is 
then up to the application, or often the user, to detect the 
disruption and retry over the new network This brute-
force switch introduces disruptions to interactive ses-
sions. According to our personal experience, network 
disruption is noticeably annoying, and particularly preva-
lent for large web pages or during poor connectivity. To 
better understand the usability impact of network disrup-
tion (e.g. as will be experienced due to brute-force switch-
ing), we performed a formal user study with 10 partici-
pants from the Rice student community who already 
used Internet-ready smartphones. The study included an 
equal number of males and females and four participants 
with non-engineering backgrounds.  
 

1 The only exception was iOS and only when switching 
from cellular to Wi-Fi, where it keeps existing connections 
indefinitely on their original interface. 

Our study consisted of two parts. The first part asked the 
users to open a copy of a regular news website cached on 
our server for consistency. We then asked users to per-
form a number of text identification tasks on three indi-
vidual pages. The participants were later directed to a 
cached copy of a mobile news search engine, where they 
were asked to identify several stories and their sources. 
During the study, our server automatically disrupted the 
data flow for the first load of three of the five page loads. 
The users had to refresh their browser to completely load 
each page. This simulated the impact of a brute-force mi-
gration. Participants were free to either use their own 
phones or our iPhone for the purpose of this study. 
For the second part, we interviewed the participants to 
assess their browsing experience, including several ques-
tions on a 1 – 5 Likert scale (agree – disagree), and several 
open ended questions. All 10 participants agreed or 
somewhat agreed that disruptions are an annoying expe-
rience. Interestingly, all 10 also agreed or somewhat 
agreed that they have had similar experiences prior, and that 
they typically refresh a page that has failed to completely load.  
While the participants’ prior network disruption expe-
riences are typically due to bad connectivity, brute force 
network switching will cause similarly unwanted and 
annoying disruptions. 
During the open ended question sessions, when asked 
whether they have experienced this phenomenon more 
often in specific web sites, 9 of 10 mentioned that they 
experience it more frequently with larger transfers, e.g. 
mentioning pages that are as “heavier” or “with lots of 
graphics”. When asked whether they have experienced 
this phenomenon more often in specific conditions, 8 of 
10 correctly identified that they experience it more fre-
quently during one or more network conditions (e.g. low 
signal, moving). We can see that even without intentional 
network switching, users are subject to unwanted and 
annoying network disruptions. This further motivates our 
AutoSwitch policy, as presented in Section VI. 
While our user study was conducted with a small number 
of participants (n=10), considering the high confidence 
intervals, our findings are expected to be true with the 
majority of user populations similar to our participants. 
For example, the 90% Agresti-Coull confidence interval 
[10] for 8 and 10 positive answers out of 10 are (0.52 , 0.91) 
and (0.66 , 1), respectively, i.e. there is a 90% chance that 
the statistics for the population falls in those intervals. 
In summary, we confirmed that network disruptions an-
noy users. We also found that typical users have exten-
sive experience with network disruptions, and have even 
figured out the conditions in which they often occur. A 
successful solution to for network disruptions must not 
blatantly change the user experience or discard the par-
tially received content. These findings motivate and assist 
both the design of our mechanisms and our example ap-
plication, AutoSwitch. 

B. Related Work 
TCP/IP lacks built-in support for switching between mul-
tiple networks (handoff) or aggregating their throughput 
(multihoming). Therefore, there exists a body of research 
on providing session continuity [11] between different 
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networks, i.e. maintaining the same IP address while 
moving between networks. Current solutions for session 
continuity fall into three categories. First is to have one 
network as the slave to a master network, where all traffic 
is directed through the latter [12], as in Virtual AP. How-
ever this requires unified management of the networks, 
increases traffic on the master network, and increases 
latency. The second category of solutions utilize a mobili-
ty gateway in the infrastructure [13, 14], to act as a proxy 
between a mobile device and the Internet. For example, 
such gateways have been employed for switching be-
tween interfaces (Wiffler [5]), for multihoming ([3, 4, 15]), 
and for striping ([13, 16-23]). However, routing all flows 
through a fixed gateway can increase the connection la-
tency.  The third category of solutions modify or extend 
the TCP/IP protocol support for mobility, e.g. by adding 
explicit support, as in [24, 25], or through Mobile IP [26-
28], where a home router or agent handles mobility and 
packet forwarding.  However, the extra forwarding in-
creases the traffic on the home agent and more important-
ly, the extra distance travelled by packets increases the 
connection latency. Mobile IPv6 eliminates the need for a 
specific foreign agent, but in return requires individual 
mobile nodes to perform the forwarding operations, with 
similar drawbacks.  
All three categories of solutions discussed above require 
additional infrastructure or network support, and thus 
are not immediately deployable. Those that have begun 
deployment suffer from limited or unsuccessful adoption. 
Furthermore, these solutions increase network latency, 
which is already known to be a major bottleneck in mo-
bile Internet performance [29]. Our techniques allow the 
immediately deployment of system policies that leverage 
multiple networks without changes to applications or 
infrastructure. MultiNets [30] is one such example that 
utilizes Wait-and-Migrate to switch between cellular and 
WiFi networks, in order to effectively save energy, offload 
data from cellular networks, and/or improve perfor-
mance. 
There are two solutions related to Resumption Agent. Re-
suming static content is typically supported by download 
managers such as wget. Yet, most other applications, e.g. 
browsers, lack resume functionality. Snoeren et al. [31] 
supported resumption through a client agent for the pur-
pose of failover between replica servers, while keeping 
servers largely unchanged. In contrast, Resumption 
Agent is an application agnostic solution for network 
switching, providing automatic resuming capabilities for 
all pre-existing applications. Further, it can handle the 
challenges of dynamic content and secure HTTPS connec-
tions.  
Recently Alperovich and Noble [32] have proposed to 
improve Wi-Fi performance for PC clients by switching 
and balancing connections between multiple Wi-Fi access 
points (APs), e.g., as enabled through Virtual Wi-Fi [33]. 
They also retain pre-existing connections on their original 
AP, while assigning new connections to new APs. Yet, 
our work focuses on smartphones and presents mechan-
isms for switching between multiple, heterogeneous net-
works. We go well beyond retaining pre-existing connec-

tions by addressing long-lived flows and supporting pre-
existing applications on mobile phones. 
There has also been several studies addressing smart-
phone usage and network traffic characteristics [34, 35]. 
Our contribution in traffic characterization complements 
these works, in particular for the purpose of migrating 
flows between networks, by providing detailed analysis 
of traffic protocols, flow length and concurrency, and the 
active application concurrent to the flows. These findings 
are crucial for designing and evaluating the feasibility of 
network migration. 
Finally, we note that we have previously presented the 
initial ideas along with partial results as a MobiCom 2010 
poster [36], and later in a more complete manner as a Rice 
University Technical Report [37]. 

III. NETWORK FLOW CHARACTERIZATION 
A thorough understanding of the characteristics of net-
work flows on modern mobile devices is critical to the 
seamless migration of flows. We next report a first-of-its-
kind study based on detailed network flow traces from 27 
iPhone 3GS users. The characterization provides key in-
sights for our design, as described in Section IV.  

A. iPhone Field Trace Collection  
We gathered real-life network traces from 27 iPhone 3GS 
users over the course of 3 months by installing logging 
software we developed, called LiveLab [38]. The phones 
were running the iOS 3.x operating system throughout 
the study, the latest version available at the beginning of 
the study. We chose the iPhone because it represents the 
cutting edge of smartphone design for usability, account-
ing for 55% of all mobile internet traffic in the US as of 
October 2009 [39]. Additionally, iPhone users have access 
to the largest number of third-party applications from the 
Apple App Store and numerous third-party repositories. 
Whenever the phone’s CPU is not asleep, LiveLab records 
TCP network connection statistics every two seconds us-
ing the netstat tool, also available on Windows and Li-
nux/Unix platforms. Moreover, LiveLab records the ap-
plication being used and the display status in real time, 
and Wi-Fi signal strength for the currently connected AP 
and all visible APs every two seconds and 15 minutes, 
respectively. Finally, it recorded the complete packet 
headers for three of the participants over one month, in 
order to gauge the data flow over UDP. We refrained 
from deploying this packet-level logging for longer time 
or more users due to its overhead. The data is recorded 
on the phones, and is transferred nightly to our servers in 
a secure fashion.  
While our participants were not recruited to accurately 
represent the vast mobile user population, the collected 
data provides an unprecedentedly detailed look into the 
connectivity on contemporary mobile devices. 

B. Focus on TCP Flows 
The packet-level logging data shows that out of the three 
common IP protocols in use TCP, UDP, and ICMP. ICMP 
packets are typically not used by interactive applications, 
but by devices to for diagnostics, device discovery and 
error messages specific to each network. Therefore, for 
the purpose of switching between networks, they can be 
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safely ignored. TCP, and UDP account for 93% and 7% of 
all remaining packets, respectively. TCP flows present the 
main challenge towards flow migration. While we will 
examine TCP flows in details later, we will first discuss 
UDP flows. We analyze the UDP flows based on port 
numbers, and further corroborate this analysis with the 
applications being used. Notably, the phones were almost 
always listening to all UDP ports. We have found the fol-
lowing services and applications utilize UDP on the 
phones (Fig. 1): 
 Skype (92%) uses UDP ports 12340 and 20515. 
 Dropbox (4%) uses UDP broadcast on port 17500 
 Simple Service Discovery Protocol (SSDP) (2%) is 

used to advertise and discover network services.  
 NetBIOS (1%) for local area network device discovery 

and networking 
 Other (<1%) such as NAT Port Mapping  

With the exception of Skype, all of these are network and 
discovery services and specific to a particular network. 
Therefore we will ignore them for the purpose of switch-
ing between networks, similar to ICMP traffic. We will 
analyze how Skype can be migrated to a different net-
work in Section III.D.1. For the remainder of this paper, 
we will focus on TCP flows, unless mentioned otherwise. 
Using the port number of the server, we divide external 

TCP flows into three categories: 
 Web (HTTP: 80, HTTPS: 443): These are used by not 

only the browser, but also by a number of native appli-
cations that utilize web services or a built-in browser. 

 Email (IMAP: 143, 993, POP3: 110, 995, SMTP: 25, 
465): These are used by the native email client, and will 
not include email accessed through the browser. 

 Other: All other applications and services. 

Fig. 1 shows the fraction of TCP flows utilized for each 
application during both interactive and non-interactive 
usage. We use the display status (on) as an indicator of 
the phone is being used interactively. We can see that 
more than three quarters of TCP streams are web flows, 
highlighting the importance of handling them properly. 
We also separate and ignore local (loopback) flows that 
reside only on the phone. 
Fig. 2 and Fig. 3 show the distribution of the number of 
flows and the CDF of flow lifetimes, respectively, accord-
ing to TCP port for both interactive and non-interactive 
sessions whenever the phone’s CPU was running. We can 
see that flows have similar characteristics during interac-
tive and non-interactive usage, yet, on average, flows dur-
ing interactive usage have slightly shorter lifetimes. In the 
following Sections, we will study them in further detail, 
according to application use. 

                                     
Fig. 2: We observed few concurrent TCP flows (Median = 2), and non-interactive and interactive usage were similar. Distribution of num-
ber of concurrent TCP flows for different TCP ports, average among all users. (Left: non-interactive sessions. Right: interactive sessions.) 

           
Fig. 3: Flows during interactive usage have slightly shorter lifetimes. CDF of TCP flow lifetimes in seconds, based on TCP port, average 
among all users. (Left: non-interactive sessions. Right: interactive sessions.) 
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Fig 1. Fraction of packets according to application for UDP packets (Left). Fraction of TCP flows for each application type (Center: non-
interactive sessions. Right: interactive sessions, i.e. phone display was on). 
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C. Flow Concurrency 
While analyzing the LiveLab data, we were surprised to 
discover that there are few concurrent flows on the 
iPhone platform, with negligiable difference between in-
teractive and non-interactive sessions. The median num-
ber of flows was 2. However, there almost always exists 
one particular flow, 97% of the time that the phone is 
awake. We have identified that flow as Apple’s push notifi-
cation service, on port 5223. Fig. 4 shows the distribution of 
number of concurrent TCP flows, excluding the Apple 
Push service, whenever the phone’s CPU was running 
and for the port types presented in Section III.B.1 (web, 
email, other). We identified the top seven applications 
that require Internet access using the data from our field 
study, which include Pandora (music streaming) and 
Skype (instant messaging, voice over IP). These applica-
tions account for over 95% of interactive phone Internet 
use. Non-interactive usage, including when the display 
was off, idle time, when the home screen was displayed 
are presented separately. Other applications, including 
those without specifically requiring internet connectivity, 
are clustered together as others. For email and other 
ports, we display only the applications that we have de-
termined to use those ports.  
We can see that even when running internet enabled ap-
plications, the phone is rarely engaged in multiple TCP 
flows simultaneously. The small numbers of simultane-
ous TCP flows shows that for web applications on mobile 
phones, multihoming mechanisms (i.e. non-striping) are effec-
tive for at most 20% of flows, as the other 80% of times 
when a web flow exists, it is a single flow. However, we 
expect this number to increase as more applications and 
services on mobile devices become available. The mail 
application, while not typically data intensive, presents 

an exception, as it regularly uses multiple flows when 
active. 

D. Flow Lifetime 
We have found that most interactive flows on the phone 
were short lived, and it is often possible to automatically 
predict long-lived flows. We measure the flow lifetime 
without including the connection / teardown phase (e.g. 
wait_fin). Our logs show a wide variation in the lifetime 
of TCP flows on the experimental phones, in particular 
between interactive and non-interactive usage sessions.  
Fig. 5 shows, on average among our participants, the CDF 
(cumulative distribution function) of TCP session lengths 
for different TCP ports and different active applications, 
similar to Section III.C.  
Our first finding is that most flows are short lived. In fact, 
50% and 44% of flows for non-interactive and interactive 
sessions, respectively, are ~2 seconds or less. In turn, this 
limits the effectiveness of power saving schemes which rely on 
long-lived downloads, such as CatNap [40]. 
Our second finding is that it is possible to predict flow 
lengths based on active application and port, i.e. the dis-
tribution of flow lifetimes varies significantly based on 
TCP port, active application, and whether the phone is 
being used interactively. For example, as shown in Fig. 5, 
the fraction of short lived email flows (i.e., IMAP, SMTP, 
POP3) is much lower: 30% and 20% for non-interactive 
and interactive sessions respectively. Similarly, the Apple 
Push service is known to be long lived. On the other 
hand, as shown in Fig. 5, TCP flows during web browser 
sessions were shorter than average. We will later see how 
these findings are important for our switching mechan-
isms. 

1) Long-lived Non-Standard TCP Flows 
We next consider long-lived flows that use non-standard 

         
Fig. 4:  Distribution for the number of TCP flows when running different Internet applications. (Left): Web. (Center): Email. (Right): other
ports, excluding the Push Service.  

 
Fig. 5:  CDF of TCP flow lifetimes (seconds), based on active application. (Left): web ports. (Center): email ports, (Right): other ports. 
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protocols, other than web, ftp, and email. Such flows are 
difficult, if not impossible, to migrate without network 
support. However, a close examination reveals that such 
flows usually do not require migration support at all.  
First, long-lived TCP flows based on closed application 
protocols are usually from background, non-interactive 
applications. Therefore, while their disruption or brute-
force migration may, for example, slightly delay an up-
date, they will rarely be noticeable to users.  
More importantly, the handful of applications that do 
utilize long lived non-standard protocols already provide 
support to migration in various forms because application 
developers anticipate the possibility of disruptions of long lived 
flows. For example, applications such as Push notifica-
tions, Twidroid, and many instant messaging applications 
are designed to gracefully and automatically re-establish 
a connection after being disconnected. Another example, 
Pandora, a common Internet radio streaming application, 
and the only one that appeared in our participants’ list of 
top 25 applications, skips the unbuffered part of the cur-
rent song, i.e. at most suffer skipping part of a track. For 
yet another example, as long as the primary interface in 
the system routing table is correctly updated, e.g. as is the 
case with our mechanisms or when the user manually 
enables or disables Wi-Fi, Skype switches to the new net-
work for both its TCP and UDP connections, without 
dropping a call and with only a very short period (~1 sec 
or less) of muting in the audio. However, if the system is 
unaware of the disruption (e.g., moving out of Wi-Fi cov-
erage), Skype will drop the call. This highlights the im-
portance of notifying the system of the network change 
for the benefit of applications that can handle disruptions 
gracefully, instead of simply losing connectivity, as per-
formed by AutoSwitch in Section VI.  

E. Background Applications  
While the iPhone 3GS we used in the study was the state-
of-the-art phone at its time, it lacked official support of 
multitasking for third-party applications as of OS 3.x. Yet, 
increased multitasking will not reduce the usability and 
effectiveness of the general case of Wait-n-Migrate me-
chanism or the Resumption Agent mechanism. We note 
that Android and the newly released iPhone iOS 4.0 allow 
background applications, e.g. Skype and Pandora, to 

access data networks [41]. This, alongside the increasing 
processing power and memory of phones, suggests an 
increase in the usage of background capable applications 
(e.g. instant messaging, Twidroid). Therefore, we would 
expect to see an increase in the number of simultaneous 
network flows, from those shown in Fig. 2 and Fig. 4.  
For both Wait-n-Migrate and Resumption Agent, assum-
ing the device can remain connected to two networks si-
multaneously, flows from multiple simultaneous applica-
tions will not affect each other and we can consider each 
application independently. Therefore, an increase in the 
number of multitasked applications will not affect the 
general performance of our mechanisms. 

IV. MIGRATION WITHOUT NETWORK SUPPORT 
Based on the findings from Section III, for the purpose of 
migrating network flows between networks, we focus on 
seamlessly migrating short lived flows or flows using 
standard protocols such as HTTP and FTP. We provide 
two novel and complementary mechanisms for migrating 
such flows without network support. We envision that in 
most systems, Wait-n-Migrate will be used primarily, and 
Resumption Agent will be used to migrate flows that 
were not successfully migrated by Wait-n-Migrate. 

A. Wait-n-Migrate  
Our first method leverages the fact that most flows are 
short lived, as seen in Section III. Wait-n-Migrate typically 
requires the device to be able to connect to multiple net-
works simultaneously. This may be through multiple in-
terfaces (e.g., 3G and Wi-Fi) or through one interface (e.g., 
multiple Wi-Fi networks through Virtual Wi-Fi [33]).  
In order to migrate one or more flows between two net-
works, Wait-n-Migrate operates as follows (Fig. 6). First it 
enables both networks so the system has simultaneous 
connectivity to both. Second it ensures all new flows are 
created on the new network. Then it waits for the flows 
on old network to terminate naturally, up to a specific 
wait-time (Fig. 7). The wait-time for each flow is a para-
meter determined by the particular migration policy and 
can be set according to application, bandwidth, and pow-
er considerations, and may be adaptive according to flow 
characteristics presented in Section III. Different wait-
time values can be used for switching to different net-

 

Fig. 6: Flowchart for Wait-n-Migrate Fig. 7: Wait-n-Migrate operation (Top), and the special case  
without requiring simultaneous connectivity (bottom).  
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works. For example, when the system policy requests a 
network switch to a slower or less efficient network, e.g. 
in order to assure connectivity, the wait-time can be set to 
infinite, i.e. until losing connectivity. On the other hand, 
when switching back to the faster / more efficient net-
work, a shorter wait-time should be used. Finally, if there 
are no remaining flows on the old network, the system 
can disable or power it off altogether. 
When the system cannot be connected to both networks 
simultaneously, a special case of Wait-n-Migrate can be 
used. This special case takes advantage of the fact that 
that most TCP flows are short lived. It monitors TCP 
flows and attempts to choose the best moment to switch 
within a specifically allowed time range, in order to mi-
nimize disruptions. This is possible through the statistical 
properties of TCP flows, as presented in Section III.  
Finally, Wait-n-Migrate can employ flow lifetime predic-
tion to further improve its effectiveness and efficiency. 
Wait-n-Migrate does not interfere with short-lived flows 
in order to avoid user disruption. However, for flows that 
are known to be highly likely to live beyond the wait 
time, e.g. based on the findings in Section III, Wait-n-
Migrate can terminate them immediately. For example, 
we already know that several types of flows are long 
lived, e.g., Push notifications and idle email flows. If the 
device is switching to a faster or more energy-efficient 
network, Wait-n-Migrate can terminate such flows im-
mediately, thus improving performance. 
B. Resumption Agent 
Our second method, Resumption Agent, leverages the 
fact that many interactive applications use standard ap-
plication layer protocols such as HTTP, HTTPS, as hig-
hlighted in Section III.B, and that most servers for these 
protocols support resume. Resumption Agent is a locally 
run proxy that enables flow migration for most such 
flows. It provides a safety net to reduce the user impact of 
network switching when Wait-n-Migrate terminates a 
flow for migration. With Resumption Agent, Wait-n-
Migrate can be more aggressive in migrating flows and 
therefore allow for faster switching. 
Resumption Agent can support any application that al-
lows resuming from a specified location in the transfer. 
Several key standard application-layer protocols, includ-
ing HTTP and FTP, provide adequate support for re-
sumption of a terminated transfer. For example, the 
HTTP standard, from version 1.1 onwards (1996), sup-
ports specifying a range when requesting a web page. The 
FTP standard also supports resuming via the rest com-
mand. Standard email protocols (e.g. IMAP, POP, and 
SMTP) can also be restarted from the beginning of any 
email, or any individual attachment in the case of IMAP. 
Resumption Agent works as follows. It requires a back-
ground service running only on the device itself, which 
acts as a proxy, and modifies the phone settings so that 
applications use this proxy to connect to the internet. If a 
flow is disconnected prematurely, Resumption Agent 
automatically resumes the transfer from where the flow 
was cut off. Therefore, when a flow needs to migrate to a 
new network, it can be terminated on the old network 
and resumed on the new network in transparent manner 

to the application. Finally, Resumption Agent can employ 
flow lifetime prediction to further improve its effective-
ness and efficiency. For web flows, their sizes are typical-
ly know at the beginning of the transfer, through the 
HTTP header response Content-Length. If Resumption 
Agent is used in conjunction with Wait-n-Migrate, the 
content length and bandwidth can further assist in de-
termining whether to kill flows immediately or wait for 
them to terminate normally. 
We note that download managers, such as wget, support 
the automatic resuming of static content. Yet, they are 
unable to handle the challenge of unsupported content, as 
discussed in 4.2.1. More importantly, web browsers (on 
both PCs and phones), and most other applications (e.g. 
the iPhone YouTube application) lack automatic resum-
ing functionality. In contrast, Resumption Agent is appli-
cation agnostic and appears as a regular proxy server to 
applications, thus providing a system level solution for all 
pre-existing applications. Moreover, Resumption Agent 
can handle network migration and two non-trivial chal-
lenges to Resumption Agent for web flows, posed by un-
supported content and encrypted HTTPS flows. We next 
discuss them and present our solutions. 

1) Unsupported Content 
There are three groups of content that cannot be resumed 
in the middle of the transfer.  
(i) The first group includes content that does not allow 
resuming. For example, some servers may ignore HTTP 
Range requests altogether or for specific content, such as 
small transfers, or chunk encoded data (the size of the 
data is not known beforehand). In this case, the transfer, if 
interrupted, must be restarted from the beginning, result-
ing in a second and unnecessary transfer of the initial por-
tion, which the Resumption Agent will ignore.  
(ii) The second group is content uploads, usually using 
HTTP POST, in which there is always the risk of repeat-
ing an action, e.g. a purchase. In such cases, such as when 
the user refreshes a page with POST content, web brows-
ers present the user with a warning. Resumption Agent 
uses the same behaviour and will avoid automatically 
resuming such a transfer if it is disconnected.  
(iii) The third group is dynamic content that changes sig-
nificantly for every reload. Resumption Agent deals with 
dynamic content using two methods. First, the HTTP 
headers Pragma:no-cache and Cache-Control:no-cache in the 
request and response headers, respectively, indicate dy-
namic content, as the prevent proxies and other web serv-
ers from caching the content. Thus, if Resumption Agent 
sees these tags, it can abstain from automatically resum-
ing a failed transfer. Second, in order to support dynamic 
content that does not provide hints in the headers, Re-
sumption Agent always resumes from a preset length 
prior to the disruption. It then compares the overlapping 
sections. If the overlapping sections are identical, Re-
sumption Agent will simply continue with the resume. If 
the overlapping sections become identical after applying 
a small offset to the data, e.g. to account for a slightly 
smaller or larger dynamic advertisement content, it will 
correct the offset and can continue with the resume. Only 
if the overlapping sections are not identical even after 
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applying an offset, will Resumption Agent abort the 
resume and the transfer will fail.  

2) Encrypted HTTPS Flows  
A greater challenge comes from HTTPS, as it is impossi-
ble for a regular proxy to directly inspect its contents, 
which is end-to-end encrypted by SSL. Indeed, when an 
application wants to connect to a HTTPS server through a 
typical proxy, it sends a CONNECT command to the 
proxy. The proxy, upon validating the eligibility request, 
will create a tunnel to the requested server, without 
touching the transferred content. Such end-to-end encryp-
tion would make it impossible to analyze the data, neces-
sary for transparently resuming or striping transfers.  
Resumption Agent employs a novel and secure two-part 
solution to this challenge. First, it will exploit a man-in-
the-middle attack. That is, as shown in Fig. 8, Resumption 
Agent presents itself to the client as the destination serv-
er. It then connects to the destination server, and there-
fore has access to the transferred stream, and can perform 
the same functionality it does for HTTP. We note that the 
open source web proxy, squid, has built-in support for 
such man-in-the-middle operation [42].  
A standard man-in-the-middle attack by a third party is, 
however, unable to present the correctly signed certificate 
to the client application, and depending on system poli-
cies, it typically raises a warning to the user. Changing 
system policies to ignore security certificates would open 
the door to any man-in-the-middle attack, and is therefore 
unacceptable. Indeed, in order to maintain security, the 
certificate check must be strictly enforced.  
The second part of our solution addresses this challenge 
without compromising security regarding an external 
man-in-the-middle attacker. All computer systems, in-
cluding our iPhones, depend on a number of preinstalled 

Certificate Authorities (CAs) to sign and validate all serv-
er certificates. Since Resumption Agent runs fully on the 
device and is not a third party, it can install its own local 
CA on the device without compromising security.  This is 
possible on the iPhone [43] as well as other platforms. 
Resumption Agent can then sign the certificates it 
presents to applications, preventing applications from 
displaying warning messages. Resumption Agent has to 
create a new certificate once for each HTTPS domain the 
user accesses. We have measured the overhead of certifi-
cate generation on the iPhone 3GS to be on average 1.7 
seconds, with a standard deviation of 1.2 seconds, meas-
ured over 100 experiments.  Furthermore, to completely 
avoid this latency, the device can use the standard CON-
NECT command without man-in-the-middle operation 
the first time the user accesses a new site, but generate the 
certificate for subsequent accesses. 
In order to maintain security it is imperative to strictly 
enforce certificate verification between clients and serv-
ers. Therefore, Resumption Agent itself verifies the server 
security certificate instead of the application (e.g. the 
browser). If a server’s certificate is not correctly signed, 
Resumption Agent (instead of the application) displays a 
warning to the user. The user can then decide whether to 
continue or forgo a potentially unsecure connection. We 
conjecture that a consistent warning for invalid certifi-
cates from Resumption Agent may be more understanda-
ble to end users than application specific warnings. 
Therefore, Resumption Agent can in fact reduce bad deci-
sions by users and increase overall security. 
Finally, in order to improve protection against rouge ap-
plications that may be running directly on the phone, it is 
important for Resumption Agent to generate per-device 
random CAs in order to prevent fake certificates copied 
across devices running Migration Agent. 

  

       
Fig. 9: Performance of Wait-n-Migrate (top) and the special case 
without simultaneous network connectivity (bottom), measured 
as the percentage of flows successfully migrated to the target 
network, for different timeout values using our field-collected 
traces.  
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Fig. 8: Regular proxy operation and Resumption Agent man-in-
the-middle operation for a browser application 
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C. Trace-Based Evaluation  
In this section, we demonstrate the efficacy of Wait-n-
Migrate and Resumption Agent using our field collected 
traces of real-life usage.  
To evaluate Wait-n-Migrate, we calculate the percentage 
of flows that are successfully transferred between net-
works for different wait-time values, assuming a time 
uniform probability of the system attempting a switch. To 
evaluate Resumption Agent, we measure the feasibility of 
resuming video streaming and browsing, and show that 
both YouTube and the majority of the websites partici-
pants most commonly visited indeed support resuming. 

1) Wait-n-Migrate 
As mentioned in Section IV.A, Wait-n-Migrate requires 
both networks/interfaces to be connected simultaneously, 
at least for the duration of the migration. For this evalua-
tion, we assume the device intends to migrate all existing 
flows to a new network. We have used our traces to cal-
culate the percentage of flows that Wait-n-Migrate can 
successfully migrate to the new network without disrup-
tion, shown in Fig. 9. For example, Wait-n-Migrate suc-
cessfully migrates all web flows for 90% and 95% of cases 
for wait-time values of 10 and 100 seconds, respectively.  
As discussed in Section IV.A, there is a special case of 
Wait-n-Migrate that is employed when the system can 
only remain connected to one network, which waits for 
the moment where there are no ongoing flows to switch 
the network. For our evaluation, we assume that this spe-
cial case waits for the moment when there are no web 
flows to switch between networks. We have used our 
traces to calculate the percentage of flows that the special 
case of Wait-n-Migrate can migrate to the new network 
without disruption in this manner, shown in Fig. 9. Since 
our policy does not wait for presumably non-interactive 
flows (i.e. non-web) to end, we can see a significantly 
larger number of disconnections for those flows. Yet, the 
special case of Wait-n-Migrate performs relatively close to 
Wait-n-Migrate for web flows, as there are rarely multiple 
web flows in our traces, as shown in Section III. However, 
we believe that increased complexity and multitasking in 
future applications will increase the performance differ-
ence of Wait-n-Migrate and its special case. 

2) Resumption Agent 
We have studied the applicability of Resumption Agent 
for two important applications, the web browser and the 
YouTube application.  
We have tested YouTube and it is fully supported by Re-

sumption Agent; the stream is based on standard HTTP 
protocols and our experiments show that YouTube serv-
ers indeed support resuming videos at an arbitrary loca-
tion. 
We evaluate the applicability of Resumption Agent for 
web browsing by identifying whether it can be effective 
for the top 100 websites our users have visited. We used 
our user study logs to generate the list of top 100 websites 
our users visit. For each of these 100 sites we measure the 
resume capability of the website’s homepage and its em-
bedded media (e.g. images). We test the homepages (i.e. 
top page) since we found that many deeper, pages may 
depend on previous state information, e.g. a specific re-
ferrer, cookies, or user login). We crawl these sites both as 
an iPhone browser and as a desktop browser, set through 
the User-Agent HTTP header. Every crawl, we download 
each item three times, twice in full, and once from the 
middle of the transfer to determine 1) if the item supports 
resuming, and 2) if the item is static. We present the re-
sults for the iPhone and desktop browsers together, since 
they were similar.  
As shown in Fig. 10, we found that 100% of embedded 
media is static and therefore supported by Resumption 
Agent. 91% of those support resuming from the middle of 
a transfer; i.e. without the need to re-transfer the already 
transferred part. Among the HTML homepages, 57% 
were static, and 9% had the same content length between 
our two consecutive downloads, but had slightly different 
content. Furthermore, most others had content lengths 
very close to each other. Fig. 11 shows the Cumulative 
Distribution Function (CDF) for the length differences 
between two consecutive downloads for our top 100 pag-
es. We can see that another 30% had content lengths with-
in 1% of each other. Therefore, we expect them to be sup-
ported by Resumption Agent, as described in Section 
IV.B.1. We note that only 16% of the HTML pages can be 
resumed from the middle of the transfer, vs. 89% of the 
embedded content. The remaining pages that do not sup-
port HTTP resume functionality incur an extra overhead 
of re-downloading the already transferred part, but can 
still be resumed transparently to the application.  
Finally, while none of the embedded content used HTML 
tags to disallow caching, we observed that 30% of the 
HTML pages were marked as such. However, of the 
HTML pages that disallowed caching, 36% in fact had 
static content, and 44% had content with the same length. 
Therefore, we conjecture that the no-cache response 
header may possibly be ignored by Resumption Agent. 

 
Fig. 11: Non-static web pages often have the same or similar 
content lengths: CDF of the length differences of two consecutive 
downloads (among the top 100 pages accessed by our users) 
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V. IPHONE BASED IMPLEMENTATION  
We implemented both the Wait-n-Migrate and the Re-
sumption Agent mechanisms on the iPhone 3GS platform 
and measured their system overhead to be negligible. 
While the iPhone is a closed platform, a jailbreak has been 
consistently available, making it possible to develop low-
level system software and implement these mechanisms. 
We have constrained our solution to support legacy ap-
plications. Our design can be extended to every major OS 
with minimal modification, however some implementa-
tion details are OS specific, as described below. 

A. Wait-n-Migrate 
The implementation of Wait-n-Migrate realizes four func-
tions: monitoring flows, selecting the primary network 
interface, terminating individual TCP flows, and disabl-
ing a network interface: 
(i) Flow Monitoring: An intelligent network switching pol-
icy requires detailed knowledge of flow properties. For 
example, it may want to force the migration of high 
bandwidth flows with long durations immediately while 
switching to Wi-Fi. Towards this end, Wait-n-Migrate 
continuously records flow statistics, such as application, 
duration, destination, and bandwidth, for all flows. This 
information is reported in real-time, as well as kept in a 
database which is made available to the switching policy. 
(ii) Selecting Primary Network: The implementation of 
Wait-n-Migrate depends on the ability to modify the sys-
tem’s routing tables to direct all new flows through the 
new network.  The routing table consists of a set of priori-
tized rules dictating which interface and gateway to use 
for establishing outgoing sockets.  All common operating 
systems have a routing table which they allow to be mod-
ified through well documented system calls. While it is 
possible to directly modify the routing table on the 
iPhone, we found that any modification to the primary 
default gateway triggered the system to reset the routing 
table.  Instead we were able to use the scutil command to 
change the priority of the networks; this in turn automati-
cally changes the routing table appropriately, as well as 

the DNS settings, and sends a system wide notification of 
the network change (as it typically does when switching 
interfaces).  The overhead for invoking a switch is quite 
small, as it simply changes a system setting, and takes less 
than 300ms to complete.  scutil is an OSX specific tool, 
though other OSs provide proprietary methods to select 
the primary network interface.  Conveniently, the iPhone 
does not disable the cellular interface while Wi-Fi is con-
nected, as some platforms, such as Android, do.  This, 
however, does not have a power impact as the phone 
must leave the cellular interface on in order to receive 
calls. 
(iii) Terminating Flows: As previously mentioned, it may 
be necessary to force the migration of specific flows, such 
as those that are known to be of long duration. We have 
achieved this by porting tcpkill to the iPhone platform. 
tcpkill has been ported to all major kernels, including 
Darwin, Windows, FreeBSD, OpenBSD, HP-UX, AIX, 
Solaris, and Linux. tcpkill uses libpcap and libnet to 
detect/monitor the TCP stream and inject a TCP RST 
packet which kills the connection. When the application 
reconnects it is automatically routed through the new 
network.  
(iv) Disabling Network: Wait-n-Migrate provides a me-
chanism to disable the entire network being migrated 
from. This can be useful after individual flows have been 
appropriately dealt with, or none of the flows require 
special treatment, depending on policy. Every major OS 
has methods to disable network interfaces. For UNIX 
based OSs this is typically “ifconfig interface down”. Un-
fortunately this method currently does not work on the 
iPhone, however similar functionality can be achieved 
through the scutil or ipconfig commands. Additionally, 
low level ioctl calls can also accomplish this behaviour.  

B. Resumption Agent 
We implemented Resumption Agent in 1400 lines of C 

code; it can be built and run on any POSIX compliant sys-
tem, including Linux and iOS. Resumption agent is similar 
to other proxies, such as squid, in that it acts as a relay point 
for Internet communication between clients and servers, 
complies with HTTP 1.0/1.1 specifications, and handles 
multiple concurrent connections.  

Our implementation (Fig. 12) leverages standard UNIX 
sockets and multithreading. When Resumption Agent starts 
it initializes a pool of worker threads, using libpthread, to 
handle concurrent requests. Each thread handles one request 
at a time, however more threads can be dynamically created 
to handle heavy loads. Creating the threads in advance re-
duces latency for handling incoming requests. Next the 
agent uses the listen() command to start listening on a prede-
fined TCP port, such as 8080, for incoming connections.  

When a new incoming client connection is received, 
Resumption Agent uses the connection’s file descriptor to 
hand the request to a worker thread. The worker thread then 
uses asynchronous non-blocking UNIX IO, read_nio(),to 
read from the connection. It parses the client headers, then 
establishes a connection to that server and forwards the cli-
ent's request headers to the server. When the server begins 
answering the request, the worker thread forwards the data 

Establish Connection to Server  
Forward Client Headers 
Forward Server’s Reply Headers to Client 
While download_unfinished && tries < MAXRETRIES  { 

Forward CHUNKSIZE bytes of data 
If disconnect_signaled  

Disconnect connection to server 
If disconnected && eligible for resume 

Reconnect to server 
Forward original headers 

 If server supports ranges 
Request range starting at prior to disconnect 

 else 
Download and discard previously downloaded data 

Tries++ 
} 
Close sockets 
 
Fig. 12: Pseudocode for Resumption Agent 
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back to the client. We note that for each transfer, Resump-
tion Agent only has to process the header data; everything 
else is simply forwarded without processing overhead, 
minimizing any performance impact. Furthermore, in order 
to reduce CPU usage and bandwidth without increasing la-
tency, the worker threads employ a large read size of 2KB, 
or the amount of data available in the system queue, from 
the server before forwarding it to the client.  

The socket() implementation usually allows a socket 
timeout option to be specified, to report a disconnection if 
no data has been sent after the specified timeout. Unfortu-
nately, while the iPhone appears to implement this option, it 
failed to function. Thus, we implemented our own timeout 
detection, with the same behaviour. If a timeout is detected, 
or the socket throws any error, the worker thread re-
establishes a connection to the server and attempts to resume 
the transfer where it left off. The worker will retry up to a 
predefined number of times, by default 50, before giving up; 
this keeps the worker from running infinitely, and potential 
flooding the network, if the server or network becomes un-
available for an extended period of time. 

We have measured the performance impact of Resump-
tion Agent to be minimal in normal usage. In particular, 
Resumption Agent consumes less than 300 KB of memo-
ry, and it increases linearly with the number of concur-
rent transfers. Its mean CPU consumption is negligible 
when idle, and 3 – 4% when actively handling transfers. 
Most importantly, we have measured the additional la-
tency introduced by the Resumption Agent to be statisti-
cally insignificant over 200 test runs. 

VI. EXAMPLE POLICY: AUTOSWITCH 
In order to evaluate the combined effectiveness of the 
Wait-n-Migrate and Resumption Agent mechanisms, we 
have developed AutoSwitch, an automatic network inter-
face switching policy. AutoSwitch attempts to offload 
data from cellular to Wi-Fi as much as possible, with min-
imum disruptions to the user. AutoSwitch solves a com-
mon complaint about Wi-Fi [44] – that it is unreliable or 
unusable at low signal levels, such as while the user is 
moving in and out of coverage areas. To achieve this goal, 
AutoSwitch intelligently switches between wireless net-
works using Wait-n-Migrate and Resumption Agent, be-
fore losing connectivity (e.g., due to mobility). We note 
that other solutions have been proposed to offload cellu-
lar traffic on Wi-Fi, e.g. [5], but they typically rely on a 
mobility gateway / proxy to handle network switches, 

with inherent latency and deployability drawbacks as 
discussed in Section II.B. 

A. AutoSwitch Design  
AutoSwitch attempts to migrate TCP flows from Wi-Fi to 
cellular before Wi-Fi coverage is dropped or Wi-Fi be-
comes unreliable, and migrate back to Wi-Fi when a reli-
able Wi-Fi connection becomes available again. For sim-
plicity, and without losing generality, we assume that 
cellular coverage is always available.  
Often, in particular for the case of mobility, switching 
between networks occurs due to forced disconnections. 
For example, a phone may switch from 3G to a Wi-Fi 
network when Wi-Fi becomes available, but move out of 
Wi-Fi coverage shortly afterwards; thus the phone is 
forced to switch back to 3G. In such a case, it is too late to 
effectively use Wait-n-Migrate. However, previous work 
shows that it is indeed possible to accurately predict net-
work conditions, and therefore initiate the network 
switch before losing coverage. For example, Breadcrumbs 
[45] and our previous work [46] predict network condi-
tions for the near and far future, respectively. As our 
main focus is on flow migration and not on the switching 
policy, we use a simple yet effective predictor, signal 
strength [8, 47], to initiate a network switch before losing 
Wi-Fi coverage completely.  
In order to determine the policy for switching to and from 
Wi-Fi, we extended LiveLab for three iPhone 3GS users 
for three weeks to continuously test and record network 
disconnections, measured by the ping tool. These three 
users acted as a sampling tool to measure Wi-Fi reliability 
at different signal strengths, collecting over 1 million con-
nectivity tests, shown in Fig. 13. We define a Wi-Fi con-
nection as disconnected if all ping tests over a period of 5 
seconds are lost, regardless of the reported signal 
strength. We can see that Wi-Fi starts to become unrelia-
ble starting at approximately -82 dBm on iPhone 3GS.  
Based on these results, we employ a simple hysteresis 
over both time and signal strength to reduce erroneous 
switching. AutoSwitch, using Wait-n-Migrate and Re-
sumption Agent, switches to cellular when a Wi-Fi signal 
level of -75 dBm or less is maintained over 3 seconds, and 
switches back to Wi-Fi when Wi-Fi signal strength reach-
es -70 dBm.  

B. Trace-based Evaluation 
We have used the traces from LiveLab to evaluate the 
efficacy of AutoSwitch using Wait-n-Migrate, during rou-

 
Fig. 13: Probability of disconnection vs. Wi-Fi signal strengths 
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tine interactive usage. As mentioned in Section VI.A, Li-
veLab provides us with continuous signal strength mea-
surements, but not connectivity measurements. We utilize 
the Wi-Fi signal strength measurements and the probabil-
ity of disconnection at different signal levels, presented in 
Fig. 13, to calculate the expected number of disruption in 
a web application. We further assume that if Wi-Fi is not 
disconnected at a specific signal level in a particular 
usage session, it will not be disconnected at that signal 
level for the entire session. 
We present the expected number of disconnections for 
AutoSwitch using Wait-n-Migrate, with wait-times of 10, 
30, and 100 seconds, respectively, in Fig. 14. We compare 
it with two cases, one where Wi-Fi is left on (no AutoS-
witch), and another case where AutoSwitch switches be-
tween networks in a brute force manner, without utilizing 
Wait-n-Migrate.  
Using 1120 hours of interactive usage traces with Wi-Fi 
enabled, for web usage, the users were expected to expe-
rience 213 disruptions without AutoSwitch. Employing 
AutoSwitch using Wait-n-Migrate and a constant wait-
time of 10, 30, and 100 seconds, users were expected to 
experience 80%, 87%, and 91% fewer disconnections, re-
spectively (Fig. 14). In contrast, AutoSwitch with brute 
force switching, i.e., without Wait-n-Migrate, slightly in-
creases disconnections to 246, due to false positives. 
We must note that users indeed take note of the mobility 
and coverage limitations of Wi-Fi, as confirmed by our 
motivational user study from Section II.A and prior work 
[44]. Therefore, they may turn off Wi-Fi altogether in 
conditions they know it is prone to failing. Hence, we 
expect that the results in this section, obtained from the 
traces when Wi-Fi was enabled, underestimate the poten-
tial benefit from AutoSwitch using Wait-n-Migrate. 

C. Field Evaluation  
We further evaluate AutoSwitch using both Wait-n-
Migrate and Resumption Agent on the iPhone platform. 
For performance evaluation we wrote a script to automat-
ically download a predetermined file over HTTP, from a 
server that supports resuming, every five seconds. We 
tested AutoSwitch using transfer sizes of 10 KB, 100 KB, 
and 1MB, as well as Wait-n-Migrate alone. We then 
measured the number of transfers that were fully com-
pleted without errors over two predetermined paths in 

Rice University, shown in Fig. 15; 1) while walking com-
monly used paths, and 2) while in a car travelling at ap-
proximately 30 km/h along campus roads. The walking 
path was approximately 1 km long, included indoor areas 
in two buildings, crossed distinct areas with good to ex-
cellent Wi-Fi connectivity (-70 dBm signal strength or 
more), and was covered approximately 95% of the time 
by a Wi-Fi signal. The driving path was approximately 3 
km long and only had one area of good Wi-Fi signal 
strength, but still had about 80% Wi-Fi coverage. Each test 
run lasted approximately one hour, and included over 
1000 transfer attempts. 
The success rates of transfers, as observed by our script, 
are shown in Fig. 16. As expected, due to Wi-Fi signal 
variations, there are a significant number of failed trans-
fers without AutoSwitch. Using AutoSwitch in conjunc-
tion with Wait-n-Migrate significantly reduced the num-
ber of disruptions. Furthermore, since the server sup-
ported resuming, Resumption Agent, used in conjunction 
with Wait-n-Migrate, was able to further reduce disrup-
tions, completely eliminating them while walking, and 
increased the success rate while driving to over 95–99% 
for different file sizes.  

VII. DISCUSSION 
Our work focuses on providing system mechanisms for 
migrating flows between networks. Various policies have 
been proposed to switch between or aggregate networks. 
AutoSwitch is one such policy, and unambiguously de-
monstrates the effectiveness of Wait-n-Migrate and Re-
sumption Agent in supporting seamless flow migration. 
The system mechanisms we have presented here can also 
be utilized to enable the immediate deployment of many 
performance and efficiency-enhancing policies studied in 
the literature, without practical deployment issues:  
Multihoming / Load Balancing: When used for load balanc-
ing and multihoming, Resumption Agent has the key advan-
tage of knowing the length of a flow at its very early stages, 

 
Fig. 15: Map of paths travelled in Rice University, for walking (1 
km, Blue loop) and driving (3 km, Red loop) scenarios 

 

 
Fig. 16: AutoSwitch significantly increases the success rate of 
10KB, 100KB, and 1MB transfers when walking (top) and driving 
(bottom) on Rice Campus  
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through the HTTP response headers, as well as the proper-
ties and conditions of the available networks. This allows 
Resumption Agent to intelligently allocate each flow on the 
appropriate network interface. 
Striping: Resumption Agent can support striping larger 
transfers, i.e. download different parts of the transfer si-
multaneously through different networks, as long as the 
content supports resuming. Resumption Agent can be 
extended to download separate chunks over each inter-
face and then amalgamate these chunks before sending 
them to the client. For striping content that contains dy-
namic parts, as described in Section IV.B.1, it is necessary 
to ensure the dynamic portions are downloaded in single 
chunks.  
Mirroring: For pages that do not support striping, or that 
are very small compared to the latency, Resumption 
Agent can be extended to simultaneously request the 
same page on multiple networks, and return whichever 
finishes first. While this method reduces efficiancy, it can 
provide substantial reduction in user perceived latency, 
especially under highly varying network environments.  
Preemptive Network Switching: When Resumption Agent is 
aware of an impending network switch, it can establish a 
connection over the new network and request the remain-
ing portion of the flow, before killing the existing flow. This 
allows the Resumption Agent to further minimize the 
latency incurred when resuming a flow. 

VIII. CONCLUSION 
We presented a first-of-its-kind characterization of IP traf-
fic on modern smartphones using traces collected in real-
life usage of 27 iPhone 3GS users over a period of three 
months. We show that the traffic is almost exclusively 
TCP, and TCP flows are often short-lived and rarely con-
current for interactive applications.  
Driven by these findings, we devised two novel and 
complementary system mechanisms to migrate TCP flows 
between networks without network or application sup-
port: Wait-n-Migrate and Resumption Agent. While Wait-
n-Migrate significantly decreases, or even eliminates       
connectivity gaps when switching between networks,               
Resumption Agent opportunistically resumes flows 
across connectivity disruptions and network switches. 
Combined, these two system mechanisms mitigate, and in 
many cases eliminate, the impact of widely varying net-
work conditions on mobile applications, as we demon-
strate using our implementation, AutoSwitch.  The seam-
less flow migration without network support collectively 
enabled by Wait-n-Migrate and Resumption Agent allows 
for immediate deployment of performance and efficiency-
enhancing policies, including multihoming and traffic 
offloading. 
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