
 1

Seamless Flow Migration on Smartphones
without Network Support

Ahmad Rahmati1, Clayton Shepard1, Chad Tossell, Lin Zhong2, Philip Kortum, Angela Nicoara2,
Jatinder Singh2; 1 Student Member, IEEE, 2 Member, IEEE

Abstract— Is it possible to migrate TCP/IP flows between different networks on modern mobile devices without infrastructure
support or protocol changes? To answer this question, we make three research contributions. (i) We report a comprehensive
characterization of IP traffic on 27 iPhone 3GS users for three months. (ii) Driven by these findings, we devise two simple,
effective, and easily deployable system mechanisms to support seamless flow migration without network support, and
extensively evaluate their effectiveness using our field collected traces of real-life usage. Wait-n-Migrate leverages the fact that
most flows are short lived. It establishes new flows on newly available networks but allows pre-existing flows on the old network
to terminate naturally. Resumption Agent takes advantage of the resumption functionality of modern protocols to securely
resume flows without application intervention. Combined, they provide an unprecedented opportunity to immediately deploy
policies that leverage multiple networks to improve the performance, efficiency, and connectivity of mobile devices. (iii) We
report an iPhone based implementation of these system mechanisms and demonstrate their overhead to be negligible.
Furthermore, we employ a sample switching policy, AutoSwitch, to demonstrate their performance. Through traces and field
measurements, we show that AutoSwitch reduces user disruptions by an order of magnitude.

Index Terms—Mobile Computing, Network Architecture and Design, User/Machine Systems

—————————— ——————————

I. INTRODUCTION
Modern mobile devices have access to multiple networks.
Not only do they have multiple network interfaces, such
as cellular and Wi-Fi, but also a single interface may
access multiple networks, such as Wi-Fi hotspots from
different providers. Over time, the networks available to a
mobile device and their qualities vary greatly, e.g. as the
user moves. A large body of recent work attests to the
value of properly switching between networks [1, 2] or
aggregating them [3, 4]. Switching between networks can
significantly improve the performance [5, 6], energy effi-
ciency [1, 7], and connectivity [8] of mobile Internet. In
this work, we focus not on policies, but mechanisms to ena-
ble switching and/or aggregating networks on smart-
phones.
The key to switching between networks or aggregating
them is to change the network for existing flows without
disrupting their corresponding applications. Brute-force
switching between networks, where one network is simp-
ly disabled and another enabled, may lead to undesirable
disruptions, as our own experience corroborates and as
confirmed by our user study. Solutions to this problem
are available in the name of handoff. Some require infra-
structure or home agent support, e.g. cellular handoff,

connection gateway, and Mobile IP, which incur extra
operating expenses and additional latency [9]. Others
require changing the TCP/IP protocol, which has been
shown to be practically very difficult. Not surprisingly,
no automatic switching or aggregating solutions have
been widely deployed in practice.
The important question this paper addresses is the fol-
lowing: On modern mobile devices, is it possible to seam-
lessly migrate TCP/IP flows between different networks
without infrastructure support or protocol changes? To-
ward answering this question, this paper presents three
research contributions.
First, we report a comprehensive characterization of net-
work traffic on smartphones using three-month traces
collected from 27 iPhone 3GS users. The characterization
provides key insights into the motivation and rationale of
our mechanisms. In particular, we have found that net-
work flows are typically short-lived and utilize standard
protocols, long-lived flows are often predictable and au-
tomatically reconnect upon disruption, and that there are
few concurrent flows during interactive usage.
Second, we present and extensively evaluate two novel
system mechanisms implemented in a smartphone to mi-
grate flows between networks without network support
and without disruption to the user. The first mechanism,
Wait-n-Migrate, takes advantage of the fact that TCP flows
are short-lived. It establishes new flows on the new net-
work, but waits for the pre-existing flows on the old net-
work to terminate normally, up to a specific wait-time set
by the migration policy. The second mechanism, Resump-
tion Agent, leverages the resume function in modern serv-
ers and resumes a flow from wherever it was disrupted,
in a manner transparent to applications. Based on our
traces, we show that using Wait-n-Migrate, we can suc-
cessfully migrate web flows for 90% and 95% of cases, for

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
 Ahmad Rahmati, Clayton Shepard, and Lin Zhong are with the Electrical

and Cmputer Engineering Department, Rice University, Houston, TX. E-
mail: {rahmati, cws, lzhong} @rice.edu.

 Chad Tossell and Phil Kortum are with the Psychology Department, Rice
University, Houston, TX. E-mail: {chad.tossell, pkortum} @rice.edu.

 Angela Nicoara and Jatinder Singh are with the Deutsche Telekom R&D
Laboratories USA, Los Altos, CA. E-mail: {angela.nicoara , j.singh }
@telekom.com.

2

wait-time values of 10 and 100 seconds, respectively.
With the addition of Resumption Agent, we show that for
web flows that support resuming, we can virtually elimi-
nate disruptions when switching between networks.
Third, we report an efficient implementation of the Wait-
n-Migrate and Resumption Agent mechanisms on the
iPhone platform, and show that their overhead is negligi-
ble. Based on the two system mechanisms, we further
implement a sample network interface switching policy,
AutoSwitch. AutoSwitch uses Wait-n-Migrate and Re-
sumption Agent to offload data from cellular to Wi-Fi as
much as possible, with minimum disruptions to the user.
AutoSwitch using Wait-n-Migrate alone achieves over
one order of magnitude reduction in the number of dis-
ruptions in our real-life traces, and from over 40% to well
under 10% for 100 KB transfers while driving. Further-
more, when the content supports resuming, disruptions
are almost entirely eliminated with the addition of Re-
sumption Agent.
The rest of this paper is organized as follows. In Section
II, we present a motivational user study to show that
brute force network switching is unacceptable to users,
and then discuss related work. In Section III, we present
the characterization of network traffic on 27 iPhone 3GS
users and provide insight to the characteristics of network
flows on modern smartphones. Based on these findings,
in Section IV, we present the design and trace-based
evaluation of Wait-n-Migrate and Resumption Agent. In
Section V, we report their implementation on iPhone and
evaluate their performance impact. In Section VI, we
present an example application, AutoSwitch, of the result-
ing seamless flow migration without network support.
Finally, we discuss methods to further enhance our me-
chanisms for increased performance in Section VII, and
conclude in Section VIII.

II. BACKGROUND
A. Consequences of Brute-Force Switching
Without network support, smartphones switch between
networks (e.g. cellular and Wi-Fi) in a brute-force man-
ner: They terminate all application flows on the old net-
work and enable the new network. This behaviour is
shared across all the three major smartphone platforms
we studied: iOS, Android, and Windows Mobile1. It is
then up to the application, or often the user, to detect the
disruption and retry over the new network This brute-
force switch introduces disruptions to interactive ses-
sions. According to our personal experience, network
disruption is noticeably annoying, and particularly preva-
lent for large web pages or during poor connectivity. To
better understand the usability impact of network disrup-
tion (e.g. as will be experienced due to brute-force switch-
ing), we performed a formal user study with 10 partici-
pants from the Rice student community who already
used Internet-ready smartphones. The study included an
equal number of males and females and four participants
with non-engineering backgrounds.

1 The only exception was iOS and only when switching
from cellular to Wi-Fi, where it keeps existing connections
indefinitely on their original interface.

Our study consisted of two parts. The first part asked the
users to open a copy of a regular news website cached on
our server for consistency. We then asked users to per-
form a number of text identification tasks on three indi-
vidual pages. The participants were later directed to a
cached copy of a mobile news search engine, where they
were asked to identify several stories and their sources.
During the study, our server automatically disrupted the
data flow for the first load of three of the five page loads.
The users had to refresh their browser to completely load
each page. This simulated the impact of a brute-force mi-
gration. Participants were free to either use their own
phones or our iPhone for the purpose of this study.
For the second part, we interviewed the participants to
assess their browsing experience, including several ques-
tions on a 1 – 5 Likert scale (agree – disagree), and several
open ended questions. All 10 participants agreed or
somewhat agreed that disruptions are an annoying expe-
rience. Interestingly, all 10 also agreed or somewhat
agreed that they have had similar experiences prior, and that
they typically refresh a page that has failed to completely load.
While the participants’ prior network disruption expe-
riences are typically due to bad connectivity, brute force
network switching will cause similarly unwanted and
annoying disruptions.
During the open ended question sessions, when asked
whether they have experienced this phenomenon more
often in specific web sites, 9 of 10 mentioned that they
experience it more frequently with larger transfers, e.g.
mentioning pages that are as “heavier” or “with lots of
graphics”. When asked whether they have experienced
this phenomenon more often in specific conditions, 8 of
10 correctly identified that they experience it more fre-
quently during one or more network conditions (e.g. low
signal, moving). We can see that even without intentional
network switching, users are subject to unwanted and
annoying network disruptions. This further motivates our
AutoSwitch policy, as presented in Section VI.
While our user study was conducted with a small number
of participants (n=10), considering the high confidence
intervals, our findings are expected to be true with the
majority of user populations similar to our participants.
For example, the 90% Agresti-Coull confidence interval
[10] for 8 and 10 positive answers out of 10 are (0.52 , 0.91)
and (0.66 , 1), respectively, i.e. there is a 90% chance that
the statistics for the population falls in those intervals.
In summary, we confirmed that network disruptions an-
noy users. We also found that typical users have exten-
sive experience with network disruptions, and have even
figured out the conditions in which they often occur. A
successful solution to for network disruptions must not
blatantly change the user experience or discard the par-
tially received content. These findings motivate and assist
both the design of our mechanisms and our example ap-
plication, AutoSwitch.

B. Related Work
TCP/IP lacks built-in support for switching between mul-
tiple networks (handoff) or aggregating their throughput
(multihoming). Therefore, there exists a body of research
on providing session continuity [11] between different

 3

networks, i.e. maintaining the same IP address while
moving between networks. Current solutions for session
continuity fall into three categories. First is to have one
network as the slave to a master network, where all traffic
is directed through the latter [12], as in Virtual AP. How-
ever this requires unified management of the networks,
increases traffic on the master network, and increases
latency. The second category of solutions utilize a mobili-
ty gateway in the infrastructure [13, 14], to act as a proxy
between a mobile device and the Internet. For example,
such gateways have been employed for switching be-
tween interfaces (Wiffler [5]), for multihoming ([3, 4, 15]),
and for striping ([13, 16-23]). However, routing all flows
through a fixed gateway can increase the connection la-
tency. The third category of solutions modify or extend
the TCP/IP protocol support for mobility, e.g. by adding
explicit support, as in [24, 25], or through Mobile IP [26-
28], where a home router or agent handles mobility and
packet forwarding. However, the extra forwarding in-
creases the traffic on the home agent and more important-
ly, the extra distance travelled by packets increases the
connection latency. Mobile IPv6 eliminates the need for a
specific foreign agent, but in return requires individual
mobile nodes to perform the forwarding operations, with
similar drawbacks.
All three categories of solutions discussed above require
additional infrastructure or network support, and thus
are not immediately deployable. Those that have begun
deployment suffer from limited or unsuccessful adoption.
Furthermore, these solutions increase network latency,
which is already known to be a major bottleneck in mo-
bile Internet performance [29]. Our techniques allow the
immediately deployment of system policies that leverage
multiple networks without changes to applications or
infrastructure. MultiNets [30] is one such example that
utilizes Wait-and-Migrate to switch between cellular and
WiFi networks, in order to effectively save energy, offload
data from cellular networks, and/or improve perfor-
mance.
There are two solutions related to Resumption Agent. Re-
suming static content is typically supported by download
managers such as wget. Yet, most other applications, e.g.
browsers, lack resume functionality. Snoeren et al. [31]
supported resumption through a client agent for the pur-
pose of failover between replica servers, while keeping
servers largely unchanged. In contrast, Resumption
Agent is an application agnostic solution for network
switching, providing automatic resuming capabilities for
all pre-existing applications. Further, it can handle the
challenges of dynamic content and secure HTTPS connec-
tions.
Recently Alperovich and Noble [32] have proposed to
improve Wi-Fi performance for PC clients by switching
and balancing connections between multiple Wi-Fi access
points (APs), e.g., as enabled through Virtual Wi-Fi [33].
They also retain pre-existing connections on their original
AP, while assigning new connections to new APs. Yet,
our work focuses on smartphones and presents mechan-
isms for switching between multiple, heterogeneous net-
works. We go well beyond retaining pre-existing connec-

tions by addressing long-lived flows and supporting pre-
existing applications on mobile phones.
There has also been several studies addressing smart-
phone usage and network traffic characteristics [34, 35].
Our contribution in traffic characterization complements
these works, in particular for the purpose of migrating
flows between networks, by providing detailed analysis
of traffic protocols, flow length and concurrency, and the
active application concurrent to the flows. These findings
are crucial for designing and evaluating the feasibility of
network migration.
Finally, we note that we have previously presented the
initial ideas along with partial results as a MobiCom 2010
poster [36], and later in a more complete manner as a Rice
University Technical Report [37].

III. NETWORK FLOW CHARACTERIZATION
A thorough understanding of the characteristics of net-
work flows on modern mobile devices is critical to the
seamless migration of flows. We next report a first-of-its-
kind study based on detailed network flow traces from 27
iPhone 3GS users. The characterization provides key in-
sights for our design, as described in Section IV.

A. iPhone Field Trace Collection
We gathered real-life network traces from 27 iPhone 3GS
users over the course of 3 months by installing logging
software we developed, called LiveLab [38]. The phones
were running the iOS 3.x operating system throughout
the study, the latest version available at the beginning of
the study. We chose the iPhone because it represents the
cutting edge of smartphone design for usability, account-
ing for 55% of all mobile internet traffic in the US as of
October 2009 [39]. Additionally, iPhone users have access
to the largest number of third-party applications from the
Apple App Store and numerous third-party repositories.
Whenever the phone’s CPU is not asleep, LiveLab records
TCP network connection statistics every two seconds us-
ing the netstat tool, also available on Windows and Li-
nux/Unix platforms. Moreover, LiveLab records the ap-
plication being used and the display status in real time,
and Wi-Fi signal strength for the currently connected AP
and all visible APs every two seconds and 15 minutes,
respectively. Finally, it recorded the complete packet
headers for three of the participants over one month, in
order to gauge the data flow over UDP. We refrained
from deploying this packet-level logging for longer time
or more users due to its overhead. The data is recorded
on the phones, and is transferred nightly to our servers in
a secure fashion.
While our participants were not recruited to accurately
represent the vast mobile user population, the collected
data provides an unprecedentedly detailed look into the
connectivity on contemporary mobile devices.

B. Focus on TCP Flows
The packet-level logging data shows that out of the three
common IP protocols in use TCP, UDP, and ICMP. ICMP
packets are typically not used by interactive applications,
but by devices to for diagnostics, device discovery and
error messages specific to each network. Therefore, for
the purpose of switching between networks, they can be

4

safely ignored. TCP, and UDP account for 93% and 7% of
all remaining packets, respectively. TCP flows present the
main challenge towards flow migration. While we will
examine TCP flows in details later, we will first discuss
UDP flows. We analyze the UDP flows based on port
numbers, and further corroborate this analysis with the
applications being used. Notably, the phones were almost
always listening to all UDP ports. We have found the fol-
lowing services and applications utilize UDP on the
phones (Fig. 1):
 Skype (92%) uses UDP ports 12340 and 20515.
 Dropbox (4%) uses UDP broadcast on port 17500
 Simple Service Discovery Protocol (SSDP) (2%) is

used to advertise and discover network services.
 NetBIOS (1%) for local area network device discovery

and networking
 Other (<1%) such as NAT Port Mapping

With the exception of Skype, all of these are network and
discovery services and specific to a particular network.
Therefore we will ignore them for the purpose of switch-
ing between networks, similar to ICMP traffic. We will
analyze how Skype can be migrated to a different net-
work in Section III.D.1. For the remainder of this paper,
we will focus on TCP flows, unless mentioned otherwise.
Using the port number of the server, we divide external

TCP flows into three categories:
 Web (HTTP: 80, HTTPS: 443): These are used by not

only the browser, but also by a number of native appli-
cations that utilize web services or a built-in browser.

 Email (IMAP: 143, 993, POP3: 110, 995, SMTP: 25,
465): These are used by the native email client, and will
not include email accessed through the browser.

 Other: All other applications and services.

Fig. 1 shows the fraction of TCP flows utilized for each
application during both interactive and non-interactive
usage. We use the display status (on) as an indicator of
the phone is being used interactively. We can see that
more than three quarters of TCP streams are web flows,
highlighting the importance of handling them properly.
We also separate and ignore local (loopback) flows that
reside only on the phone.
Fig. 2 and Fig. 3 show the distribution of the number of
flows and the CDF of flow lifetimes, respectively, accord-
ing to TCP port for both interactive and non-interactive
sessions whenever the phone’s CPU was running. We can
see that flows have similar characteristics during interac-
tive and non-interactive usage, yet, on average, flows dur-
ing interactive usage have slightly shorter lifetimes. In the
following Sections, we will study them in further detail,
according to application use.

Fig. 2: We observed few concurrent TCP flows (Median = 2), and non-interactive and interactive usage were similar. Distribution of num-
ber of concurrent TCP flows for different TCP ports, average among all users. (Left: non-interactive sessions. Right: interactive sessions.)

Fig. 3: Flows during interactive usage have slightly shorter lifetimes. CDF of TCP flow lifetimes in seconds, based on TCP port, average
among all users. (Left: non-interactive sessions. Right: interactive sessions.)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

all
other
http
https
email
local
http or https

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

all
other
http
https
email
local
http or https

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

all other
http https
email local

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

all other
http https
email local

Fig 1. Fraction of packets according to application for UDP packets (Left). Fraction of TCP flows for each application type (Center: non-
interactive sessions. Right: interactive sessions, i.e. phone display was on).

Fraction of UDP packets

Dropbox

NetBios

Skype

SSDP

Other

non‐interactive

other

http

https

email

local

interactive

other

http

https

email

local

 5

C. Flow Concurrency
While analyzing the LiveLab data, we were surprised to
discover that there are few concurrent flows on the
iPhone platform, with negligiable difference between in-
teractive and non-interactive sessions. The median num-
ber of flows was 2. However, there almost always exists
one particular flow, 97% of the time that the phone is
awake. We have identified that flow as Apple’s push notifi-
cation service, on port 5223. Fig. 4 shows the distribution of
number of concurrent TCP flows, excluding the Apple
Push service, whenever the phone’s CPU was running
and for the port types presented in Section III.B.1 (web,
email, other). We identified the top seven applications
that require Internet access using the data from our field
study, which include Pandora (music streaming) and
Skype (instant messaging, voice over IP). These applica-
tions account for over 95% of interactive phone Internet
use. Non-interactive usage, including when the display
was off, idle time, when the home screen was displayed
are presented separately. Other applications, including
those without specifically requiring internet connectivity,
are clustered together as others. For email and other
ports, we display only the applications that we have de-
termined to use those ports.
We can see that even when running internet enabled ap-
plications, the phone is rarely engaged in multiple TCP
flows simultaneously. The small numbers of simultane-
ous TCP flows shows that for web applications on mobile
phones, multihoming mechanisms (i.e. non-striping) are effec-
tive for at most 20% of flows, as the other 80% of times
when a web flow exists, it is a single flow. However, we
expect this number to increase as more applications and
services on mobile devices become available. The mail
application, while not typically data intensive, presents

an exception, as it regularly uses multiple flows when
active.

D. Flow Lifetime
We have found that most interactive flows on the phone
were short lived, and it is often possible to automatically
predict long-lived flows. We measure the flow lifetime
without including the connection / teardown phase (e.g.
wait_fin). Our logs show a wide variation in the lifetime
of TCP flows on the experimental phones, in particular
between interactive and non-interactive usage sessions.
Fig. 5 shows, on average among our participants, the CDF
(cumulative distribution function) of TCP session lengths
for different TCP ports and different active applications,
similar to Section III.C.
Our first finding is that most flows are short lived. In fact,
50% and 44% of flows for non-interactive and interactive
sessions, respectively, are ~2 seconds or less. In turn, this
limits the effectiveness of power saving schemes which rely on
long-lived downloads, such as CatNap [40].
Our second finding is that it is possible to predict flow
lengths based on active application and port, i.e. the dis-
tribution of flow lifetimes varies significantly based on
TCP port, active application, and whether the phone is
being used interactively. For example, as shown in Fig. 5,
the fraction of short lived email flows (i.e., IMAP, SMTP,
POP3) is much lower: 30% and 20% for non-interactive
and interactive sessions respectively. Similarly, the Apple
Push service is known to be long lived. On the other
hand, as shown in Fig. 5, TCP flows during web browser
sessions were shorter than average. We will later see how
these findings are important for our switching mechan-
isms.

1) Long-lived Non-Standard TCP Flows
We next consider long-lived flows that use non-standard

Fig. 4: Distribution for the number of TCP flows when running different Internet applications. (Left): Web. (Center): Email. (Right): other
ports, excluding the Push Service.

Fig. 5: CDF of TCP flow lifetimes (seconds), based on active application. (Left): web ports. (Center): email ports, (Right): other ports.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

non‐interactive
all (interactive)
idle
other apps
facebook
safari
mail
pandora
maps
youtube
skype

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

non‐interactive

all (interactive)

idle

mail

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

non‐interactive
all (interactive)
idle
other apps
facebook
safari
mail
pandora
maps
youtube
skype

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

non‐interactive
all (interactive)
idle
other apps
facebook
safari
mail
pandora
maps
youtube
skype

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

non‐interactive
all (interactive)
idle
mail

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

non‐interactive
all (interactive)
idle
other apps
skype

6

protocols, other than web, ftp, and email. Such flows are
difficult, if not impossible, to migrate without network
support. However, a close examination reveals that such
flows usually do not require migration support at all.
First, long-lived TCP flows based on closed application
protocols are usually from background, non-interactive
applications. Therefore, while their disruption or brute-
force migration may, for example, slightly delay an up-
date, they will rarely be noticeable to users.
More importantly, the handful of applications that do
utilize long lived non-standard protocols already provide
support to migration in various forms because application
developers anticipate the possibility of disruptions of long lived
flows. For example, applications such as Push notifica-
tions, Twidroid, and many instant messaging applications
are designed to gracefully and automatically re-establish
a connection after being disconnected. Another example,
Pandora, a common Internet radio streaming application,
and the only one that appeared in our participants’ list of
top 25 applications, skips the unbuffered part of the cur-
rent song, i.e. at most suffer skipping part of a track. For
yet another example, as long as the primary interface in
the system routing table is correctly updated, e.g. as is the
case with our mechanisms or when the user manually
enables or disables Wi-Fi, Skype switches to the new net-
work for both its TCP and UDP connections, without
dropping a call and with only a very short period (~1 sec
or less) of muting in the audio. However, if the system is
unaware of the disruption (e.g., moving out of Wi-Fi cov-
erage), Skype will drop the call. This highlights the im-
portance of notifying the system of the network change
for the benefit of applications that can handle disruptions
gracefully, instead of simply losing connectivity, as per-
formed by AutoSwitch in Section VI.

E. Background Applications
While the iPhone 3GS we used in the study was the state-
of-the-art phone at its time, it lacked official support of
multitasking for third-party applications as of OS 3.x. Yet,
increased multitasking will not reduce the usability and
effectiveness of the general case of Wait-n-Migrate me-
chanism or the Resumption Agent mechanism. We note
that Android and the newly released iPhone iOS 4.0 allow
background applications, e.g. Skype and Pandora, to

access data networks [41]. This, alongside the increasing
processing power and memory of phones, suggests an
increase in the usage of background capable applications
(e.g. instant messaging, Twidroid). Therefore, we would
expect to see an increase in the number of simultaneous
network flows, from those shown in Fig. 2 and Fig. 4.
For both Wait-n-Migrate and Resumption Agent, assum-
ing the device can remain connected to two networks si-
multaneously, flows from multiple simultaneous applica-
tions will not affect each other and we can consider each
application independently. Therefore, an increase in the
number of multitasked applications will not affect the
general performance of our mechanisms.

IV. MIGRATION WITHOUT NETWORK SUPPORT
Based on the findings from Section III, for the purpose of
migrating network flows between networks, we focus on
seamlessly migrating short lived flows or flows using
standard protocols such as HTTP and FTP. We provide
two novel and complementary mechanisms for migrating
such flows without network support. We envision that in
most systems, Wait-n-Migrate will be used primarily, and
Resumption Agent will be used to migrate flows that
were not successfully migrated by Wait-n-Migrate.

A. Wait-n-Migrate
Our first method leverages the fact that most flows are
short lived, as seen in Section III. Wait-n-Migrate typically
requires the device to be able to connect to multiple net-
works simultaneously. This may be through multiple in-
terfaces (e.g., 3G and Wi-Fi) or through one interface (e.g.,
multiple Wi-Fi networks through Virtual Wi-Fi [33]).
In order to migrate one or more flows between two net-
works, Wait-n-Migrate operates as follows (Fig. 6). First it
enables both networks so the system has simultaneous
connectivity to both. Second it ensures all new flows are
created on the new network. Then it waits for the flows
on old network to terminate naturally, up to a specific
wait-time (Fig. 7). The wait-time for each flow is a para-
meter determined by the particular migration policy and
can be set according to application, bandwidth, and pow-
er considerations, and may be adaptive according to flow
characteristics presented in Section III. Different wait-
time values can be used for switching to different net-

Fig. 6: Flowchart for Wait-n-Migrate Fig. 7: Wait-n-Migrate operation (Top), and the special case
without requiring simultaneous connectivity (bottom).

Switch Primary Interface
{update routing table, DNS}

Force All Flows to Migrate

Wait For TCP Flows to
Terminate Themselves

Analyze and Kill Appropriate
TCP Flows Immediately

Flows Automatically Restart
on New Interface

long life / idle flow
flow 3

flow 1
flow 2

Time

Switch
request Timeout

flow 4
flow 5

long life / idle flow

long life / idle flow

flow 1
flow 2

Time

Timeout

flow 3
flow 4

long life / idle flow

Switch
event

Switch
request

 7

works. For example, when the system policy requests a
network switch to a slower or less efficient network, e.g.
in order to assure connectivity, the wait-time can be set to
infinite, i.e. until losing connectivity. On the other hand,
when switching back to the faster / more efficient net-
work, a shorter wait-time should be used. Finally, if there
are no remaining flows on the old network, the system
can disable or power it off altogether.
When the system cannot be connected to both networks
simultaneously, a special case of Wait-n-Migrate can be
used. This special case takes advantage of the fact that
that most TCP flows are short lived. It monitors TCP
flows and attempts to choose the best moment to switch
within a specifically allowed time range, in order to mi-
nimize disruptions. This is possible through the statistical
properties of TCP flows, as presented in Section III.
Finally, Wait-n-Migrate can employ flow lifetime predic-
tion to further improve its effectiveness and efficiency.
Wait-n-Migrate does not interfere with short-lived flows
in order to avoid user disruption. However, for flows that
are known to be highly likely to live beyond the wait
time, e.g. based on the findings in Section III, Wait-n-
Migrate can terminate them immediately. For example,
we already know that several types of flows are long
lived, e.g., Push notifications and idle email flows. If the
device is switching to a faster or more energy-efficient
network, Wait-n-Migrate can terminate such flows im-
mediately, thus improving performance.
B. Resumption Agent
Our second method, Resumption Agent, leverages the
fact that many interactive applications use standard ap-
plication layer protocols such as HTTP, HTTPS, as hig-
hlighted in Section III.B, and that most servers for these
protocols support resume. Resumption Agent is a locally
run proxy that enables flow migration for most such
flows. It provides a safety net to reduce the user impact of
network switching when Wait-n-Migrate terminates a
flow for migration. With Resumption Agent, Wait-n-
Migrate can be more aggressive in migrating flows and
therefore allow for faster switching.
Resumption Agent can support any application that al-
lows resuming from a specified location in the transfer.
Several key standard application-layer protocols, includ-
ing HTTP and FTP, provide adequate support for re-
sumption of a terminated transfer. For example, the
HTTP standard, from version 1.1 onwards (1996), sup-
ports specifying a range when requesting a web page. The
FTP standard also supports resuming via the rest com-
mand. Standard email protocols (e.g. IMAP, POP, and
SMTP) can also be restarted from the beginning of any
email, or any individual attachment in the case of IMAP.
Resumption Agent works as follows. It requires a back-
ground service running only on the device itself, which
acts as a proxy, and modifies the phone settings so that
applications use this proxy to connect to the internet. If a
flow is disconnected prematurely, Resumption Agent
automatically resumes the transfer from where the flow
was cut off. Therefore, when a flow needs to migrate to a
new network, it can be terminated on the old network
and resumed on the new network in transparent manner

to the application. Finally, Resumption Agent can employ
flow lifetime prediction to further improve its effective-
ness and efficiency. For web flows, their sizes are typical-
ly know at the beginning of the transfer, through the
HTTP header response Content-Length. If Resumption
Agent is used in conjunction with Wait-n-Migrate, the
content length and bandwidth can further assist in de-
termining whether to kill flows immediately or wait for
them to terminate normally.
We note that download managers, such as wget, support
the automatic resuming of static content. Yet, they are
unable to handle the challenge of unsupported content, as
discussed in 4.2.1. More importantly, web browsers (on
both PCs and phones), and most other applications (e.g.
the iPhone YouTube application) lack automatic resum-
ing functionality. In contrast, Resumption Agent is appli-
cation agnostic and appears as a regular proxy server to
applications, thus providing a system level solution for all
pre-existing applications. Moreover, Resumption Agent
can handle network migration and two non-trivial chal-
lenges to Resumption Agent for web flows, posed by un-
supported content and encrypted HTTPS flows. We next
discuss them and present our solutions.

1) Unsupported Content
There are three groups of content that cannot be resumed
in the middle of the transfer.
(i) The first group includes content that does not allow
resuming. For example, some servers may ignore HTTP
Range requests altogether or for specific content, such as
small transfers, or chunk encoded data (the size of the
data is not known beforehand). In this case, the transfer, if
interrupted, must be restarted from the beginning, result-
ing in a second and unnecessary transfer of the initial por-
tion, which the Resumption Agent will ignore.
(ii) The second group is content uploads, usually using
HTTP POST, in which there is always the risk of repeat-
ing an action, e.g. a purchase. In such cases, such as when
the user refreshes a page with POST content, web brows-
ers present the user with a warning. Resumption Agent
uses the same behaviour and will avoid automatically
resuming such a transfer if it is disconnected.
(iii) The third group is dynamic content that changes sig-
nificantly for every reload. Resumption Agent deals with
dynamic content using two methods. First, the HTTP
headers Pragma:no-cache and Cache-Control:no-cache in the
request and response headers, respectively, indicate dy-
namic content, as the prevent proxies and other web serv-
ers from caching the content. Thus, if Resumption Agent
sees these tags, it can abstain from automatically resum-
ing a failed transfer. Second, in order to support dynamic
content that does not provide hints in the headers, Re-
sumption Agent always resumes from a preset length
prior to the disruption. It then compares the overlapping
sections. If the overlapping sections are identical, Re-
sumption Agent will simply continue with the resume. If
the overlapping sections become identical after applying
a small offset to the data, e.g. to account for a slightly
smaller or larger dynamic advertisement content, it will
correct the offset and can continue with the resume. Only
if the overlapping sections are not identical even after

8

applying an offset, will Resumption Agent abort the
resume and the transfer will fail.

2) Encrypted HTTPS Flows
A greater challenge comes from HTTPS, as it is impossi-
ble for a regular proxy to directly inspect its contents,
which is end-to-end encrypted by SSL. Indeed, when an
application wants to connect to a HTTPS server through a
typical proxy, it sends a CONNECT command to the
proxy. The proxy, upon validating the eligibility request,
will create a tunnel to the requested server, without
touching the transferred content. Such end-to-end encryp-
tion would make it impossible to analyze the data, neces-
sary for transparently resuming or striping transfers.
Resumption Agent employs a novel and secure two-part
solution to this challenge. First, it will exploit a man-in-
the-middle attack. That is, as shown in Fig. 8, Resumption
Agent presents itself to the client as the destination serv-
er. It then connects to the destination server, and there-
fore has access to the transferred stream, and can perform
the same functionality it does for HTTP. We note that the
open source web proxy, squid, has built-in support for
such man-in-the-middle operation [42].
A standard man-in-the-middle attack by a third party is,
however, unable to present the correctly signed certificate
to the client application, and depending on system poli-
cies, it typically raises a warning to the user. Changing
system policies to ignore security certificates would open
the door to any man-in-the-middle attack, and is therefore
unacceptable. Indeed, in order to maintain security, the
certificate check must be strictly enforced.
The second part of our solution addresses this challenge
without compromising security regarding an external
man-in-the-middle attacker. All computer systems, in-
cluding our iPhones, depend on a number of preinstalled

Certificate Authorities (CAs) to sign and validate all serv-
er certificates. Since Resumption Agent runs fully on the
device and is not a third party, it can install its own local
CA on the device without compromising security. This is
possible on the iPhone [43] as well as other platforms.
Resumption Agent can then sign the certificates it
presents to applications, preventing applications from
displaying warning messages. Resumption Agent has to
create a new certificate once for each HTTPS domain the
user accesses. We have measured the overhead of certifi-
cate generation on the iPhone 3GS to be on average 1.7
seconds, with a standard deviation of 1.2 seconds, meas-
ured over 100 experiments. Furthermore, to completely
avoid this latency, the device can use the standard CON-
NECT command without man-in-the-middle operation
the first time the user accesses a new site, but generate the
certificate for subsequent accesses.
In order to maintain security it is imperative to strictly
enforce certificate verification between clients and serv-
ers. Therefore, Resumption Agent itself verifies the server
security certificate instead of the application (e.g. the
browser). If a server’s certificate is not correctly signed,
Resumption Agent (instead of the application) displays a
warning to the user. The user can then decide whether to
continue or forgo a potentially unsecure connection. We
conjecture that a consistent warning for invalid certifi-
cates from Resumption Agent may be more understanda-
ble to end users than application specific warnings.
Therefore, Resumption Agent can in fact reduce bad deci-
sions by users and increase overall security.
Finally, in order to improve protection against rouge ap-
plications that may be running directly on the phone, it is
important for Resumption Agent to generate per-device
random CAs in order to prevent fake certificates copied
across devices running Migration Agent.

Fig. 9: Performance of Wait-n-Migrate (top) and the special case
without simultaneous network connectivity (bottom), measured
as the percentage of flows successfully migrated to the target
network, for different timeout values using our field-collected
traces.

0%

20%

40%

60%

80%

100%

1 10 100 1000

http

https

http or
https

email

other

0%

20%

40%

60%

80%

100%

1 10 100 1000

http

https

http or
https

email

other

Fig. 8: Regular proxy operation and Resumption Agent man-in-
the-middle operation for a browser application

Regular Proxy or
Migration Agent

HTTPHTTP

Browser server.com

HTTP

Regular Proxy HTTPS

Browser

server.com
certificate signed
by trusted CA

server.com

Regular HTTPS

Resumption
Agent

HTTPS

Resumption Agent, man‐in‐the‐middle HTTPS

Browser server.com

server.com
certificate signed
by Resumption

Agent

server.com
certificate signed
by Trusted CA

Phone

 9

C. Trace-Based Evaluation
In this section, we demonstrate the efficacy of Wait-n-
Migrate and Resumption Agent using our field collected
traces of real-life usage.
To evaluate Wait-n-Migrate, we calculate the percentage
of flows that are successfully transferred between net-
works for different wait-time values, assuming a time
uniform probability of the system attempting a switch. To
evaluate Resumption Agent, we measure the feasibility of
resuming video streaming and browsing, and show that
both YouTube and the majority of the websites partici-
pants most commonly visited indeed support resuming.

1) Wait-n-Migrate
As mentioned in Section IV.A, Wait-n-Migrate requires
both networks/interfaces to be connected simultaneously,
at least for the duration of the migration. For this evalua-
tion, we assume the device intends to migrate all existing
flows to a new network. We have used our traces to cal-
culate the percentage of flows that Wait-n-Migrate can
successfully migrate to the new network without disrup-
tion, shown in Fig. 9. For example, Wait-n-Migrate suc-
cessfully migrates all web flows for 90% and 95% of cases
for wait-time values of 10 and 100 seconds, respectively.
As discussed in Section IV.A, there is a special case of
Wait-n-Migrate that is employed when the system can
only remain connected to one network, which waits for
the moment where there are no ongoing flows to switch
the network. For our evaluation, we assume that this spe-
cial case waits for the moment when there are no web
flows to switch between networks. We have used our
traces to calculate the percentage of flows that the special
case of Wait-n-Migrate can migrate to the new network
without disruption in this manner, shown in Fig. 9. Since
our policy does not wait for presumably non-interactive
flows (i.e. non-web) to end, we can see a significantly
larger number of disconnections for those flows. Yet, the
special case of Wait-n-Migrate performs relatively close to
Wait-n-Migrate for web flows, as there are rarely multiple
web flows in our traces, as shown in Section III. However,
we believe that increased complexity and multitasking in
future applications will increase the performance differ-
ence of Wait-n-Migrate and its special case.

2) Resumption Agent
We have studied the applicability of Resumption Agent
for two important applications, the web browser and the
YouTube application.
We have tested YouTube and it is fully supported by Re-

sumption Agent; the stream is based on standard HTTP
protocols and our experiments show that YouTube serv-
ers indeed support resuming videos at an arbitrary loca-
tion.
We evaluate the applicability of Resumption Agent for
web browsing by identifying whether it can be effective
for the top 100 websites our users have visited. We used
our user study logs to generate the list of top 100 websites
our users visit. For each of these 100 sites we measure the
resume capability of the website’s homepage and its em-
bedded media (e.g. images). We test the homepages (i.e.
top page) since we found that many deeper, pages may
depend on previous state information, e.g. a specific re-
ferrer, cookies, or user login). We crawl these sites both as
an iPhone browser and as a desktop browser, set through
the User-Agent HTTP header. Every crawl, we download
each item three times, twice in full, and once from the
middle of the transfer to determine 1) if the item supports
resuming, and 2) if the item is static. We present the re-
sults for the iPhone and desktop browsers together, since
they were similar.
As shown in Fig. 10, we found that 100% of embedded
media is static and therefore supported by Resumption
Agent. 91% of those support resuming from the middle of
a transfer; i.e. without the need to re-transfer the already
transferred part. Among the HTML homepages, 57%
were static, and 9% had the same content length between
our two consecutive downloads, but had slightly different
content. Furthermore, most others had content lengths
very close to each other. Fig. 11 shows the Cumulative
Distribution Function (CDF) for the length differences
between two consecutive downloads for our top 100 pag-
es. We can see that another 30% had content lengths with-
in 1% of each other. Therefore, we expect them to be sup-
ported by Resumption Agent, as described in Section
IV.B.1. We note that only 16% of the HTML pages can be
resumed from the middle of the transfer, vs. 89% of the
embedded content. The remaining pages that do not sup-
port HTTP resume functionality incur an extra overhead
of re-downloading the already transferred part, but can
still be resumed transparently to the application.
Finally, while none of the embedded content used HTML
tags to disallow caching, we observed that 30% of the
HTML pages were marked as such. However, of the
HTML pages that disallowed caching, 36% in fact had
static content, and 44% had content with the same length.
Therefore, we conjecture that the no-cache response
header may possibly be ignored by Resumption Agent.

Fig. 11: Non-static web pages often have the same or similar
content lengths: CDF of the length differences of two consecutive
downloads (among the top 100 pages accessed by our users)

85%

90%

95%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8%

%
 o
f h

o
m
ep

ag
e
h
tm

l f
ile
s

% length difference between two consecutive downloads
Fig. 10: Most web pages and all of their embedded content
(among our top 100 pages) are supported by Resumption Agent

0%

20%

40%

60%

80%

100%

web page embedded content

1% length difference

same length

static

partial resuming

10

V. IPHONE BASED IMPLEMENTATION
We implemented both the Wait-n-Migrate and the Re-
sumption Agent mechanisms on the iPhone 3GS platform
and measured their system overhead to be negligible.
While the iPhone is a closed platform, a jailbreak has been
consistently available, making it possible to develop low-
level system software and implement these mechanisms.
We have constrained our solution to support legacy ap-
plications. Our design can be extended to every major OS
with minimal modification, however some implementa-
tion details are OS specific, as described below.

A. Wait-n-Migrate
The implementation of Wait-n-Migrate realizes four func-
tions: monitoring flows, selecting the primary network
interface, terminating individual TCP flows, and disabl-
ing a network interface:
(i) Flow Monitoring: An intelligent network switching pol-
icy requires detailed knowledge of flow properties. For
example, it may want to force the migration of high
bandwidth flows with long durations immediately while
switching to Wi-Fi. Towards this end, Wait-n-Migrate
continuously records flow statistics, such as application,
duration, destination, and bandwidth, for all flows. This
information is reported in real-time, as well as kept in a
database which is made available to the switching policy.
(ii) Selecting Primary Network: The implementation of
Wait-n-Migrate depends on the ability to modify the sys-
tem’s routing tables to direct all new flows through the
new network. The routing table consists of a set of priori-
tized rules dictating which interface and gateway to use
for establishing outgoing sockets. All common operating
systems have a routing table which they allow to be mod-
ified through well documented system calls. While it is
possible to directly modify the routing table on the
iPhone, we found that any modification to the primary
default gateway triggered the system to reset the routing
table. Instead we were able to use the scutil command to
change the priority of the networks; this in turn automati-
cally changes the routing table appropriately, as well as

the DNS settings, and sends a system wide notification of
the network change (as it typically does when switching
interfaces). The overhead for invoking a switch is quite
small, as it simply changes a system setting, and takes less
than 300ms to complete. scutil is an OSX specific tool,
though other OSs provide proprietary methods to select
the primary network interface. Conveniently, the iPhone
does not disable the cellular interface while Wi-Fi is con-
nected, as some platforms, such as Android, do. This,
however, does not have a power impact as the phone
must leave the cellular interface on in order to receive
calls.
(iii) Terminating Flows: As previously mentioned, it may
be necessary to force the migration of specific flows, such
as those that are known to be of long duration. We have
achieved this by porting tcpkill to the iPhone platform.
tcpkill has been ported to all major kernels, including
Darwin, Windows, FreeBSD, OpenBSD, HP-UX, AIX,
Solaris, and Linux. tcpkill uses libpcap and libnet to
detect/monitor the TCP stream and inject a TCP RST
packet which kills the connection. When the application
reconnects it is automatically routed through the new
network.
(iv) Disabling Network: Wait-n-Migrate provides a me-
chanism to disable the entire network being migrated
from. This can be useful after individual flows have been
appropriately dealt with, or none of the flows require
special treatment, depending on policy. Every major OS
has methods to disable network interfaces. For UNIX
based OSs this is typically “ifconfig interface down”. Un-
fortunately this method currently does not work on the
iPhone, however similar functionality can be achieved
through the scutil or ipconfig commands. Additionally,
low level ioctl calls can also accomplish this behaviour.

B. Resumption Agent
We implemented Resumption Agent in 1400 lines of C

code; it can be built and run on any POSIX compliant sys-
tem, including Linux and iOS. Resumption agent is similar
to other proxies, such as squid, in that it acts as a relay point
for Internet communication between clients and servers,
complies with HTTP 1.0/1.1 specifications, and handles
multiple concurrent connections.

Our implementation (Fig. 12) leverages standard UNIX
sockets and multithreading. When Resumption Agent starts
it initializes a pool of worker threads, using libpthread, to
handle concurrent requests. Each thread handles one request
at a time, however more threads can be dynamically created
to handle heavy loads. Creating the threads in advance re-
duces latency for handling incoming requests. Next the
agent uses the listen() command to start listening on a prede-
fined TCP port, such as 8080, for incoming connections.

When a new incoming client connection is received,
Resumption Agent uses the connection’s file descriptor to
hand the request to a worker thread. The worker thread then
uses asynchronous non-blocking UNIX IO, read_nio(),to
read from the connection. It parses the client headers, then
establishes a connection to that server and forwards the cli-
ent's request headers to the server. When the server begins
answering the request, the worker thread forwards the data

Establish Connection to Server
Forward Client Headers
Forward Server’s Reply Headers to Client
While download_unfinished && tries < MAXRETRIES {

Forward CHUNKSIZE bytes of data
If disconnect_signaled

Disconnect connection to server
If disconnected && eligible for resume

Reconnect to server
Forward original headers

 If server supports ranges
Request range starting at prior to disconnect

 else
Download and discard previously downloaded data

Tries++
}
Close sockets

Fig. 12: Pseudocode for Resumption Agent

 11

back to the client. We note that for each transfer, Resump-
tion Agent only has to process the header data; everything
else is simply forwarded without processing overhead,
minimizing any performance impact. Furthermore, in order
to reduce CPU usage and bandwidth without increasing la-
tency, the worker threads employ a large read size of 2KB,
or the amount of data available in the system queue, from
the server before forwarding it to the client.

The socket() implementation usually allows a socket
timeout option to be specified, to report a disconnection if
no data has been sent after the specified timeout. Unfortu-
nately, while the iPhone appears to implement this option, it
failed to function. Thus, we implemented our own timeout
detection, with the same behaviour. If a timeout is detected,
or the socket throws any error, the worker thread re-
establishes a connection to the server and attempts to resume
the transfer where it left off. The worker will retry up to a
predefined number of times, by default 50, before giving up;
this keeps the worker from running infinitely, and potential
flooding the network, if the server or network becomes un-
available for an extended period of time.

We have measured the performance impact of Resump-
tion Agent to be minimal in normal usage. In particular,
Resumption Agent consumes less than 300 KB of memo-
ry, and it increases linearly with the number of concur-
rent transfers. Its mean CPU consumption is negligible
when idle, and 3 – 4% when actively handling transfers.
Most importantly, we have measured the additional la-
tency introduced by the Resumption Agent to be statisti-
cally insignificant over 200 test runs.

VI. EXAMPLE POLICY: AUTOSWITCH
In order to evaluate the combined effectiveness of the
Wait-n-Migrate and Resumption Agent mechanisms, we
have developed AutoSwitch, an automatic network inter-
face switching policy. AutoSwitch attempts to offload
data from cellular to Wi-Fi as much as possible, with min-
imum disruptions to the user. AutoSwitch solves a com-
mon complaint about Wi-Fi [44] – that it is unreliable or
unusable at low signal levels, such as while the user is
moving in and out of coverage areas. To achieve this goal,
AutoSwitch intelligently switches between wireless net-
works using Wait-n-Migrate and Resumption Agent, be-
fore losing connectivity (e.g., due to mobility). We note
that other solutions have been proposed to offload cellu-
lar traffic on Wi-Fi, e.g. [5], but they typically rely on a
mobility gateway / proxy to handle network switches,

with inherent latency and deployability drawbacks as
discussed in Section II.B.

A. AutoSwitch Design
AutoSwitch attempts to migrate TCP flows from Wi-Fi to
cellular before Wi-Fi coverage is dropped or Wi-Fi be-
comes unreliable, and migrate back to Wi-Fi when a reli-
able Wi-Fi connection becomes available again. For sim-
plicity, and without losing generality, we assume that
cellular coverage is always available.
Often, in particular for the case of mobility, switching
between networks occurs due to forced disconnections.
For example, a phone may switch from 3G to a Wi-Fi
network when Wi-Fi becomes available, but move out of
Wi-Fi coverage shortly afterwards; thus the phone is
forced to switch back to 3G. In such a case, it is too late to
effectively use Wait-n-Migrate. However, previous work
shows that it is indeed possible to accurately predict net-
work conditions, and therefore initiate the network
switch before losing coverage. For example, Breadcrumbs
[45] and our previous work [46] predict network condi-
tions for the near and far future, respectively. As our
main focus is on flow migration and not on the switching
policy, we use a simple yet effective predictor, signal
strength [8, 47], to initiate a network switch before losing
Wi-Fi coverage completely.
In order to determine the policy for switching to and from
Wi-Fi, we extended LiveLab for three iPhone 3GS users
for three weeks to continuously test and record network
disconnections, measured by the ping tool. These three
users acted as a sampling tool to measure Wi-Fi reliability
at different signal strengths, collecting over 1 million con-
nectivity tests, shown in Fig. 13. We define a Wi-Fi con-
nection as disconnected if all ping tests over a period of 5
seconds are lost, regardless of the reported signal
strength. We can see that Wi-Fi starts to become unrelia-
ble starting at approximately -82 dBm on iPhone 3GS.
Based on these results, we employ a simple hysteresis
over both time and signal strength to reduce erroneous
switching. AutoSwitch, using Wait-n-Migrate and Re-
sumption Agent, switches to cellular when a Wi-Fi signal
level of -75 dBm or less is maintained over 3 seconds, and
switches back to Wi-Fi when Wi-Fi signal strength reach-
es -70 dBm.

B. Trace-based Evaluation
We have used the traces from LiveLab to evaluate the
efficacy of AutoSwitch using Wait-n-Migrate, during rou-

Fig. 13: Probability of disconnection vs. Wi-Fi signal strengths

0%

20%

40%

60%

80%

100%

40 50 60 70 80 90 100

P
ro
b
ab

ili
ty
 o
f

D
is
co
n
n
e
ct
io
n

Signal Strength (‐dB) Fig. 14: AutoSwitch significantly reduces the expected number
of disruptions in 1120 hours of interactive usage traces with Wi-
Fi enabled, for different wait-time values

0 50 100 150 200 250

NO AutoSwitch

brute force

Wait‐n‐Migrate, 10s

Wait‐n‐Migrate, 30s

Wait‐n‐Migrate, 100s

Expected # of failures

12

tine interactive usage. As mentioned in Section VI.A, Li-
veLab provides us with continuous signal strength mea-
surements, but not connectivity measurements. We utilize
the Wi-Fi signal strength measurements and the probabil-
ity of disconnection at different signal levels, presented in
Fig. 13, to calculate the expected number of disruption in
a web application. We further assume that if Wi-Fi is not
disconnected at a specific signal level in a particular
usage session, it will not be disconnected at that signal
level for the entire session.
We present the expected number of disconnections for
AutoSwitch using Wait-n-Migrate, with wait-times of 10,
30, and 100 seconds, respectively, in Fig. 14. We compare
it with two cases, one where Wi-Fi is left on (no AutoS-
witch), and another case where AutoSwitch switches be-
tween networks in a brute force manner, without utilizing
Wait-n-Migrate.
Using 1120 hours of interactive usage traces with Wi-Fi
enabled, for web usage, the users were expected to expe-
rience 213 disruptions without AutoSwitch. Employing
AutoSwitch using Wait-n-Migrate and a constant wait-
time of 10, 30, and 100 seconds, users were expected to
experience 80%, 87%, and 91% fewer disconnections, re-
spectively (Fig. 14). In contrast, AutoSwitch with brute
force switching, i.e., without Wait-n-Migrate, slightly in-
creases disconnections to 246, due to false positives.
We must note that users indeed take note of the mobility
and coverage limitations of Wi-Fi, as confirmed by our
motivational user study from Section II.A and prior work
[44]. Therefore, they may turn off Wi-Fi altogether in
conditions they know it is prone to failing. Hence, we
expect that the results in this section, obtained from the
traces when Wi-Fi was enabled, underestimate the poten-
tial benefit from AutoSwitch using Wait-n-Migrate.

C. Field Evaluation
We further evaluate AutoSwitch using both Wait-n-
Migrate and Resumption Agent on the iPhone platform.
For performance evaluation we wrote a script to automat-
ically download a predetermined file over HTTP, from a
server that supports resuming, every five seconds. We
tested AutoSwitch using transfer sizes of 10 KB, 100 KB,
and 1MB, as well as Wait-n-Migrate alone. We then
measured the number of transfers that were fully com-
pleted without errors over two predetermined paths in

Rice University, shown in Fig. 15; 1) while walking com-
monly used paths, and 2) while in a car travelling at ap-
proximately 30 km/h along campus roads. The walking
path was approximately 1 km long, included indoor areas
in two buildings, crossed distinct areas with good to ex-
cellent Wi-Fi connectivity (-70 dBm signal strength or
more), and was covered approximately 95% of the time
by a Wi-Fi signal. The driving path was approximately 3
km long and only had one area of good Wi-Fi signal
strength, but still had about 80% Wi-Fi coverage. Each test
run lasted approximately one hour, and included over
1000 transfer attempts.
The success rates of transfers, as observed by our script,
are shown in Fig. 16. As expected, due to Wi-Fi signal
variations, there are a significant number of failed trans-
fers without AutoSwitch. Using AutoSwitch in conjunc-
tion with Wait-n-Migrate significantly reduced the num-
ber of disruptions. Furthermore, since the server sup-
ported resuming, Resumption Agent, used in conjunction
with Wait-n-Migrate, was able to further reduce disrup-
tions, completely eliminating them while walking, and
increased the success rate while driving to over 95–99%
for different file sizes.

VII. DISCUSSION
Our work focuses on providing system mechanisms for
migrating flows between networks. Various policies have
been proposed to switch between or aggregate networks.
AutoSwitch is one such policy, and unambiguously de-
monstrates the effectiveness of Wait-n-Migrate and Re-
sumption Agent in supporting seamless flow migration.
The system mechanisms we have presented here can also
be utilized to enable the immediate deployment of many
performance and efficiency-enhancing policies studied in
the literature, without practical deployment issues:
Multihoming / Load Balancing: When used for load balanc-
ing and multihoming, Resumption Agent has the key advan-
tage of knowing the length of a flow at its very early stages,

Fig. 15: Map of paths travelled in Rice University, for walking (1
km, Blue loop) and driving (3 km, Red loop) scenarios

Fig. 16: AutoSwitch significantly increases the success rate of
10KB, 100KB, and 1MB transfers when walking (top) and driving
(bottom) on Rice Campus

0%

20%

40%

60%

80%

100%

10 KB 100 KB 1 MB

Su
cc
e
ss
 r
at
e

Transfer size

AutoSwitch using
Resumption Agent
& Wait‐n‐Migrate

AutoSwitch using
Wait‐n‐Migrate

no AutoSwitch

0%

20%

40%

60%

80%

100%

10 KB 100 KB 1 MB

Su
cc
e
ss
 r
at
e

Transfer size

AutoSwitch using
Resumption Agent
& Wait‐n‐Migrate

AutoSwitch using
Wait‐n‐Migrate

no AutoSwitch

 13

through the HTTP response headers, as well as the proper-
ties and conditions of the available networks. This allows
Resumption Agent to intelligently allocate each flow on the
appropriate network interface.
Striping: Resumption Agent can support striping larger
transfers, i.e. download different parts of the transfer si-
multaneously through different networks, as long as the
content supports resuming. Resumption Agent can be
extended to download separate chunks over each inter-
face and then amalgamate these chunks before sending
them to the client. For striping content that contains dy-
namic parts, as described in Section IV.B.1, it is necessary
to ensure the dynamic portions are downloaded in single
chunks.
Mirroring: For pages that do not support striping, or that
are very small compared to the latency, Resumption
Agent can be extended to simultaneously request the
same page on multiple networks, and return whichever
finishes first. While this method reduces efficiancy, it can
provide substantial reduction in user perceived latency,
especially under highly varying network environments.
Preemptive Network Switching: When Resumption Agent is
aware of an impending network switch, it can establish a
connection over the new network and request the remain-
ing portion of the flow, before killing the existing flow. This
allows the Resumption Agent to further minimize the
latency incurred when resuming a flow.

VIII. CONCLUSION
We presented a first-of-its-kind characterization of IP traf-
fic on modern smartphones using traces collected in real-
life usage of 27 iPhone 3GS users over a period of three
months. We show that the traffic is almost exclusively
TCP, and TCP flows are often short-lived and rarely con-
current for interactive applications.
Driven by these findings, we devised two novel and
complementary system mechanisms to migrate TCP flows
between networks without network or application sup-
port: Wait-n-Migrate and Resumption Agent. While Wait-
n-Migrate significantly decreases, or even eliminates
connectivity gaps when switching between networks,
Resumption Agent opportunistically resumes flows
across connectivity disruptions and network switches.
Combined, these two system mechanisms mitigate, and in
many cases eliminate, the impact of widely varying net-
work conditions on mobile applications, as we demon-
strate using our implementation, AutoSwitch. The seam-
less flow migration without network support collectively
enabled by Wait-n-Migrate and Resumption Agent allows
for immediate deployment of performance and efficiency-
enhancing policies, including multihoming and traffic
offloading.

REFERENCES
[1] Rahmati, A. and Zhong, L. Context-for-Wireless: Context-

Sensitive Energy-Efficient Wireless Data Transfer. Proc. Int.
Conf. Mobile Systems, Applications and Services (MobiSys). 2007.

[2] Qadeer, W., Rosing, T.S., Ankcorn, J., Krishnan, V. and De
Micheli, G. Heterogeneous Wireless Network Management.
Proc. Wksp. on Power Aware Computer Systems (PACS). 2003.

[3] Thompson, N., He, G. and Luo, H., Flow scheduling for end-

host multihoming. in IEEE INFOCOM, Citeseer, 2006.
[4] Kandula, S., Lin, K.C.-J., Badirkhanli, T. and Katabi, D. FatVAP:

aggregating AP backhaul capacity to maximize throughput.
Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2008.

[5] Balasubramanian, A., Mahajan, R. and Venkataramani, A.
Augmenting Mobile 3G Using WiFi. Proc. Int. Conf. Mobile
Systems, Applications and Services (MobiSys), 2010.

[6] Han, B., Hui, P., Kumar, V., Marathe, M., Pei, G. and
Srinivasan, A. Cellular Traffic Offloading through
Opportunistic Communications: A Case Study. Proc. ACM Int.
Wrkshp. Challenged Networks (CHANTS), 2010.

[7] Pering, T., Agarwal, Y., Gupta, R. and Want, R. CoolSpots:
Reducing the Power Consumption of Wireless Mobile Devices
with Multiple Radio Interfaces. Proc. Int. Conf. Mobile Systems,
Applications and Services (MobiSys). 220-232, 2006.

[8] Giannoulis, A., Fiore, M. and Knightly, E.W. Supporting
vehicular mobility in urban multi-hop wireless networks
Proceeding of the 6th international conference on Mobile systems,
applications, and services, ACM, Breckenridge, CO, USA, 2008.

[9] Lai, A. and Nieh, J. Limits of wide-area thin-client computing.
SIGMETRICS Perform. Eval. Rev., 30 (1). 228-239, 2002.

[10] Agresti, A. and Coull, B.A. Approximate Is Better than "Exact"
for Interval Estimation of Binomial Proportions. The American
Statistician, 52 (2). 119-126, 1998.

[11] Gustafsson, E. and Jonsson, A. Always Best Connected. IEEE
Wireless Communications, 10 (1). 49-55, 2003.

[12] Pahlavan, K., Krishnamurthy, P., Hatami, A., Ylianttila, M.,
Makela, J., Pichna, R. and Vallstron, J. Handoff in hybrid mobile
data networks. IEEE Personal Communications, 7 (2). 34-47, 2000.

[13] Maltz, D. and Bhagwat, P., MSOCKS: An architecture for
transport layer mobility. in IEEE INFOCOM, 1998.

[14] Chalmers, R. and Almeroth, K., A mobility gateway for small
device networks. in IEEE PerCom, Citeseer, 2004.

[15] Sharma, P., Lee, S., Brassil, J. and Shin, K., Handheld routers:
Intelligent bandwidth aggregation for mobile collaborative
communities. in IEEE BroadNets, Citeseer, 2004.

[16] Pucha, H. and Hu, Y. Overlay TCP: Ending end-to-end
transport for higher throughput. Poster in ACM SIGCOMM,
2005.

[17] Hsieh, H. and Sivakumar, R. pTCP: An end-to-end transport
layer protocol for striped connections. Proc. IEEE ICNP, 2002.

[18] Han, H., Shakkottai, S., Hollot, C., Srikant, R. and Towsley, D.
Overlay TCP for multi-path routing and congestion control.
IEEE/ACM Trans. Networking, 2006.

[19] Kandula, S., Katabi, D., Sinha, S. and Berger, A. Dynamic load
balancing without packet reordering. SIGCOMM Comput.
Commun. Rev., 37 (2). 51-62, 2007.

[20] Traw, C. and Smith, J. Striping within the network subsystem.
IEEE Network, 9 (4). 22-32, 1995.

[21] Sivakumar, H., Bailey, S. and Grossman, R.L. PSockets: the case
for application-level network striping for data intensive
applications using high speed wide area networks Proc.
ACM/IEEE conf. on Supercomputing (CDROM), IEEE Computer
Society, 2000.

[22] Hsieh, H., Kim, K., Zhu, Y. and Sivakumar, R. A receiver-
centric transport protocol for mobile hosts with heterogeneous
wireless interfaces. MobiCom, 2003.

[23] Rodriguez, P., Chakravorty, R., Chesterfield, J., Pratt, I. and
Banerjee, S. MAR: a commuter router infrastructure for the
mobile Internet Proc. Int. Conf. Mobile Systems, Applications and
Services (MobiSys), ACM, Boston, MA, USA, 2004.

[24] Kim, S. and Copeland, J., TCP for seamless vertical handoff in
hybrid mobile data networks. in IEEE GLOBECOM, 661-665,
2003.

[25] Kim, K.-H., Zhu, Y., Sivakumar, R. and Hsieh, H.-Y. A receiver-
centric transport protocol for mobile hosts with heterogeneous
wireless interfaces. Wirel. Netw., 11 (4). 363-382, 2005.

[26] Stemm, M. and Katz, R. Vertical handoffs in wireless overlay
networks. Mobile Networks and Applications, 3 (4). 335-350, 1998.

14

[27] Perkins, C., Alpert, S. and Woolf, B. Mobile IP; Design Principles
and Practices. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1997.

[28] Perkins, C. Mobile IP. IEEE Communications Magazine, 35 (5). 84-
99, 1997.

[29] Huang, J., Xu, Q., Tiwana, B., Mao, Z., Zhang, M. and Bahl, P.
Anatomizing Application Performance Differences on
Smartphones. Proc. Int. Conf. Mobile Systems, Applications and
Services (MobiSys). 165-178, 2010.

[30] Nirjon, S.M.S., Nicoara, A., Hsu, C.-H., Singh, J.P. and
Stankovic, J. MultiNets: Policy Oriented Dynamic Switching of
WirelessInterfaces on Mobile Devices. under review

[31] Snoeren, A.C., Andersen, D.G. and Balakrishnan, H. Fine-
grained failover using connection migration Proc. USENIX
Symp. on Internet Technologies and Systems, USENIX Association,
San Francisco, California, 2001.

[32] Alperovich, T. and Noble, B. The case for elastic access Proc.
ACM int. wrkshp. on Mobility in the evolving internet architecture
(MobiArch), ACM, 2010.

[33] Chandra, R. and Bahl, B. MultiNet: Connecting to Multiple
IEEE 802.1 1 Networks Using a Single Wireless Card. Proc. IEEE
InfoCom, 2004.

[34] Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D.,
Govindan, R. and Estrin, D. Diversity in Smartphone Usage.
Proc. Int. Conf. Mobile Systems, Applications and Services
(MobiSys), 2010.

[35] Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S. and
Estrin, D. A First Look at Traffic on Smartphones. Proc. Internet
Measurement Conference (IMC), 2010.

[36] Rahmati, A., Shepard, C., Nicoara, A., Zhong, L. and Singh, J.P.
MobiCom 2010 Poster: Mobile TCP usage characteristics and
the feasibility of network migration without infrastructure
support. SIGMOBILE Mob. Comput. Commun. Rev., 14 (4). 2010.

[37] Rahmati, A., Shepard, C., Tossell, C., Nicoara, A., Zhong, L.,
Kortum, P. and Singh, J. Seamless Flow Migration on
Smartphones without Network Support. Rice University
Technical Report 2010-1214, http://arxiv.org/abs/1012.3071, 2010.

[38] Shepard, C., Rahmati, A., Tossell, C., Zhong, L. and Kortum, P.
LiveLab: Measuring Wireless Networks and Smartphone Users
in the Field. Proc. Wrkshp. Hot Topics in Measurement & Modeling
of Computer Systems (HotMetrics), 2010.

[39] AdMob. AdMob October 2009 Mobile Metrics Report
http://metrics.admob.com/2009/11/october-2009-mobile-metrics-
report/, October 2009.

[40] Dogar, F. and Steenkiste, P. Catnap: Exploiting High
Bandwidth Wireless Interfaces to Save Energy for Mobile
Devices. Proc. Int. Conf. Mobile Systems, Applications and Services
(MobiSys), 2010.

[41] Buchanan, M. Gizmodo Blog: How Multitasking Works on a
Phone. http://gizmodo.com/5527407/giz-explains-how-multitasking-
works-on-a-phone, April 29, 2010.

[42] Squid Web Cache. Squid-in-the-middle SSL Bump
http://wiki.squid-cache.org/Features/SslBump.

[43] Cryptopath blog. iPhone certificate flaws
http://cryptopath.wordpress.com/2010/01/29/iphone-certificate-flaws/.

[44] Rahmati, A. and Zhong, L. A longitudinal study of non-voice
mobile phone usage by teens from an underserved urban
community, Tech. Rep. 0515-09, Rice University, 2009.

[45] Nicholson, A.J. and Noble, B.D. BreadCrumbs: Forecasting
Mobile Connectivity. Proc. Int. Conf. Mobile Computing and
Networking (MobiCom). 46-57, 2008.

[46] Rahmati, A. and Zhong, L. Context-based network estimation
for energy-efficient ubiquitous wireless connectivity. IEEE
Transactions on Mobile Computing, 2010.

[47] Kim, S.K., Kang, C.G. and Kim, K.S., An adaptive handover
decision algorithm based on the estimating mobility from
signal strength measurements. in Vehicular Technology
Conference (VCT), 1004-1008 Vol. 1002, 2004.

Ahmad Rahmati is a graduate student of Electrical and Computer
Engineering at Rice University, Houston, TX. He received his M.S.
degree in Electrical and Computer Engineering from Rice University
in 2008, and his B.S. degree in Computer Engineering from Sharif
University of Technology in 2004. He has been a research intern at
AT&T Labs Research, Motorola Labs, and Deutsche Telekom R&D
Lab. USA, in 2006, 2008, and 2010, respectively. His publications
have received the ACM SIGCHI/SIGMOBILE MobileHCI Best Paper
Award in 2007, and have been featured as the spotlight paper of the
IEEE Transactions on Mobile Computing twice, in 2010 and 2011.

Clayton Shepard is a graduate student of Electrical and Computer
Engineering at Rice University, Houston, TX. He received his B.S.
degree in Electrical and Computer Engineering from Rice University
in 2008.

Chad C. Tossell is a graduate student in psychology at Rice Univer-
sity in Houston, Texas and a behavioral scientist in the United States
Air Force. He received his M.S. in Applied Psychology from Arizona
State University in 2006 and his B.S. in Psychology from the Univer-
sity of California, Berkeley in 2003.

Lin Zhong received his B.S. and M.S. from Tsinghua University in
1998 and 2000, respectively. He received his Ph.D. from Princeton
University in September, 2005. He was with NEC Labs, America, for
the summer of 2003 and with Microsoft Research for the summers of
2004 and 2005. He joined the Department of Electrical & Computer
Engineering, Rice University as an assistant professor in September,
2005. He received the AT&T Asian-Pacific Leadership Award in
2001 and the Harold W. Dodds Princeton University Honorific Fel-
lowship for 2004-2005. He coauthored a paper that is selected as
one of the 30 most influential papers in the first 10 years of Design,
Automation & Test in Europe conferences. He and his students re-
ceived the best paper awards from ACM MobileHCI 2007 and IEEE
PerCom 2009. His research interests include mobile & embedded
system design, human-computer interaction, and nanoelectronics.
His research has been funded by National Science Foundation,
Motorola Labs, Nokia, Texas Instruments, and Microsoft Research.

Philip Kortum is currently a faculty member in the Department of
Psychology at Rice University in Houston, Texas. Prior to joining
Rice, he worked for almost a decade at SBC Laboratories (now
AT&T Laboratories) doing human factors research and development
in all areas of telecommunications. Dr. Kortum continues to do work
in the research and development of user-centric systems in both the
visual (web design, equipment design, image compression) and
auditory domains (telephony operations, mobile computing and in-
teractive voice response systems). He received his Ph.D. from the
University of Texas at Austin.

Angela Nicoara is a Senior Research Scientist at Deutsche Tele-
kom R&D Lab USA since 2008. She completed her graduate studies
with a PhD from ETH Zurich, Switzerland in 2007 and her undergra-
duate studies at Politehnica University Timisoara, Romania with a
Computer Science degree in 2002. Her research interests are in the
areas of services and mobile platforms, adaptive software architec-
tures, virtual machines, middleware for mobile and distributed com-
puting, and distributed systems. Her current research activities in-
clude the development of open and programmable mobile platforms
(e.g., Android) and novel information technology services to shape
the emerging trends in fixed and mobile infrastructure and services
sectors. Angela has served as a general chair, industry co-chair,
program committee or scientific reviewer member for EuroSys,
VMIL, LCN–WNM, MobiCASE, Communications of the ACM. She
had contracts and internships with Google Inc. and Webquote in
California, as well as a German software company Caatoosee.

Jatinder Singh is

