
Reducing Latency by Eliminating Synchrony

Min Hong Yun, Songtao He, and Lin Zhong
mhyun, songtaohe, lzhong@rice.edu

Rice University, Houston, TX

Abstract
Drawing or dragging an object on a mobile device is annoying to-
day because the latency is manifested spatially with an obvious gap
between the touch point and the line head or dragged object. This
work identifies the multiple synchronization points in the input to
display path of modern mobile systems as a major source of latency,
contributing about 30ms to the overall latency.

We present Presto, an asynchronous design of the input to dis-
play path. By focusing on the main application and relaxing con-
ventional requirements of no frame drop and no tearing effects,
Presto is able to eliminate much of the latency due to synchrony.
By carefully guarding against consecutive frame drops and limiting
the risk of tearing to a small region around the touch point, Presto
is able to reduce their visual impact to barely noticeable. Using a
prototype based on Android 5, we are able to quantify the effective-
ness, overhead and user experience of Presto through both objec-
tive measurements and subjective user assessment. We show that
Presto is able to reduce the latency of legacy Android applications
by close to half; and more importantly, we show this reduction is or-
thogonal to that by other popular approaches. When combined with
touch prediction, Presto is able to reduce the touch latency below
10ms, a remarkable achievement without any hardware support.

1. INTRODUCTION
User-perceived latency is the delay from when a user acts on

a system to when the system’s response is externalized on the dis-
play. Short latency is critical to a good user experience [5]. Because
human users are unable to perceive latency of many tens of ms be-
tween visual cause and effect, latency of several tens of ms has been
considered adequate for point/selection-based interaction [38]. On
today’s smartphones and tablets, the latency is over 60ms accord-
ing to the literature [9] and our own measurement. Unfortunately,
the use of touchscreen manifest latency into a spatial gap between
the touch point and the visual effect, i.e. the line head of drawing
or the object being dragged [41]; a latency of 60ms produces an
obvious, annoying gap. Figure 1 illustrates this.

The goal of this work is to reduce the latency of touchscreen
interaction on modern mobile systems for unmodified applications,

©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052557

.

Figure 1: Touchscreen drawing translates latency (82ms Android)
into a visible gap as the pen moves at 25 cm per second and the
line head falls behind (Autodesk Sketch, camera captured).

both native and web. Our key insight is that the input to display path
within modern mobile systems are synchronized at multiple points,
with a periodical signal that coincides with the display refreshing,
as show in Figure 2. Such synchronization contributes significantly
to the overall latency. Our key idea is to eliminate the synchrony in
this path. Modern mobile systems, however, employ the synchrony
for three important reasons: a consistent frame rate, no frame drop,
and absolutely no tearing effect. In §2, we analyze the input to dis-
play path, highlight the three points of synchronization, and revisit
their reasons.

In §3, we present Presto, an asynchronous design of the input to
display path, for mobile systems. The key rationale behind Presto
is that the three reasons for synchrony must change with today’s
hardware and software as elaborated. Presto exploits the libera-
tion from the above three reasons by applying two novel designs
to the main application under interaction. Just-in-time trigger, or
JITT, eliminates synchronization between the input subsystem and
the application and that inside the output subsystem. It triggers the
input subsystem to deliver events to the application so that the lat-
ter’s output will be ready for display right before the next display
refresh. Position-aware rendering, or PAR, alleviates the latency
from the synchronization point in the display subsystem by selec-
tively allowing the application to directly write into the graphics
buffer that is being externalized to the display.

We report an Android 5-based implementation of Presto and
evaluate its effectiveness in latency reduction, overhead, and assur-
ance in user experience with both objective measurements and sub-
jective assessment. Our measurements show that Presto reduces
the latency by 32ms on average for legacy applications, with a
power overhead that can be eliminated with emerging SDK sup-
port. The effectiveness is obvious as presented in §5. Importantly,
we show that the latency reduction resulting from Presto is or-
thogonal to that from known techniques such as touch prediction
used by iOS 9. Double-blind user evaluation of legacy applica-
tions with and without Presto clearly demonstrates that Presto
improves the user experience with touchscreen interaction without
noticeable side effects. The prototype implementation is described
in §4 and the evaluation is presented in §5.

Display
Subsystem

Operating System

Input
Subsystem

Buffer
Manager

Sample Refresh
Graphics buffer:User event FILLEDFREE

Renderer

Graphics
Subsystem

Main Thread Compositor Thread
Web

Engine manipulate

DOM Shadow

Painterread

glClear
glVertex*()
glDraw*()

OpenGL
Commands

Browser

Web App
HTML

CSS
JS

Native
ApplicationI/O Subsystem

Event
Manager

Figure 2: From events to the display: the event manager batches
events from the input subsystem and delivers them to the applica-
tion; the application then draws a frame on a buffer supplied by
the buffer manager. The buffer manager transfers buffer ownership
to the display subsystem. A browser adopts three-part model and
imposes additional layer on the place of the native application.

Although we evaluated Presto with touchscreen interaction, it
will reduce latency for other forms of interactions. Importantly, for
augmented reality applications with a head-mounted display, the
head movement can also manifest latency into spatial displacement
of virtual objects. By reducing the latency due to synchronization,
Presto is likely to be effective there as well.

On the other hand, Presto is limited in two important ways.
First, it only deals with latency resulting from synchronization. The
majority of the rest of the latency comes from the input hardware.
Therefore, techniques such as faster input hardware and touch pre-
diction can complement Presto. We show that Presto, when com-
bined with touch prediction of 30ms, can reduce the overall la-
tency below 10ms. Second, although Presto is a system solution
that supports all applications, it should not be blindly applied to
all applications because of the power overhead and risk of tearing
from PAR. Instead, we anticipate the developer and the user to de-
cide whether Presto should be enabled for a specific application.
These are elaborated in §7.

2. UNDERSTANDING LATENCY
In this section, we present an in-depth analysis of the input to

display path on modern mobile systems. Our analysis pinpoints
to a fundamental source of latency: when a user input event prop-
agates through a mobile system, many of its subsystems have to
wait for a global synchronization signal, instead of processing the
event immediately. Modern mobile systems opt for this synchro-
nized design in order to avoid tearing and drop frames and to keep
a consistent frame rate, all at the cost of latency.

2.1 From an event to the display
Based on an understanding of mainstream mobile OSes, i.e., iOS

and Android, we abstract in Figure 2 the process in which input
events are processed and eventually result in a screen update. The
process includes five software subsystems: input, event manager,
application, buffer manager, and display. All except application are
part of the OS (not necessarily in kernel space though).

The input subsystem includes the input device driver. It samples
the physical world and produces software events.

The event manager is per-application. It buffers events from the
input and delivers them to the application. The buffering is neces-
sary because the input subsystem produces the events faster than
the display refreshes. High-rate events are necessary because of
application’s desire for smooth visual effects.

Sync pulse

Application

Buffer Mgr.

Display

time

BUSY

Event Mgr.

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
FILLED

Buffer

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 waiting

waiting

FILLED FILLED

Display Panel

Ev
en

ts

𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

+
𝑇𝑇

Figure 3: The timeline to process events and display a frame: the
sync pulse fired by the display controller triggers the event and
buffer managers, causing waiting and delay.

The buffer manager is also per-application. It manages the ap-
plication’s graphics buffers. The application processes the input
events, takes a FREE buffer, marks it BUSYapp, draws a frame on it
and then marks it FILLED.

The display subsystem includes the software part of the com-
poser. It takes FILLED buffers from multiple applications, marks
them as BUSYdisp, and handles them to the hardware, which com-
poses the buffers and sends the composition to the display panel se-
rially. After that, the display subsystem marks the buffers as FREE.
Because composing is done by specialized hardware, it adds negli-
gible latency. The display controller refreshes the display panel and
fires a sync pulse periodically, with the period of Tsync. In modern
mobile systems, Tsync is typically 1/60 s [15, 40].

Web applications: Browsers themselves are native applica-
tions; modern browsers are platforms that run web applications im-
plemented in HTML, CSS, and JavaScript. Common to many mod-
ern browsers [39, 31, 42] are three parts as depicted in Figure 2: I/O
subsystem, renderer, and graphics subsystem. On mobile systems,
these parts are implemented as separate processes (Chromium and
Safari with WebKit2) or threads (Firefox). The renderer is per-
application for security reasons and can access I/O and GPU only
indirectly via the I/O subsystem and the graphics subsystem, re-
spectively. The renderer has two threads: main and compositor
threads. The main thread runs the web engine (e.g., WebKit or
Blink); the engine loads a web application, creates and updates
its document object model (DOM) tree. The compositor thread
commands the graphics subsystem based on the DOM tree. Be-
cause the DOM tree is shared between the two threads, the browser
avoids locking by keeping a shadow tree in the compositor thread.
When the web engine cannot complete updating (e.g., inserting new
nodes or changing attributes of nodes) the DOM tree before the
next screen update, it commits partial updates to the shadow tree so
that it can complete pending updates while the compositor thread
is issuing drawing commands. The graphics subsystem, which has
privileged access to the GPU, draws on a graphics buffer using the
received commands.

2.2 Synchrony introduces latency
At the cost of long latency, a modern mobile OS guarantees three

visual goals: a consistent frame rate, no frame drops, and no tearing
effects. To achieve the goals, a mobile OS introduces synchrony to
its design in temporal and spacial manners. In time, the event and
buffer managers strictly synchronize with the sync pulse produced
by the display controller; in space, it assumes a buffer can not be
read and written at the same time. Figure 3 provides a timeline
from an application to the display panel in modern mobile OSes.

Synchrony in time: In the legacy design, both the event and
buffer managers synchronize with a periodical signal, a.k.a. the
sync pulse, fired by the display subsystem when refreshing. The
event manager waits for a sync pulse to deliver buffered events

to the application. This buffering introduces an average latency
of 0.5 · Tsync. Assume the application takes Tapp to process the
events, produce a frame and write it into a graphics buffer. It will
wait another (Tsync − Tapp) until the next sync pulse so that the
buffer manager can process the buffer1. Android reduces this by
triggering the event manager 7.5ms after the sync pulse [16]. In
this case, the latency would be (Tsync − Tapp − 7.5ms).

The buffer manager waits for a sync pulse to change graphics
buffers’ ownership among the application, display subsystem and
itself. Assuming this process takes Tout, this synchronization in-
troduces an average latency of (Tsync − Tout) because the buffers
will be externalized only at the next sync pulse. These synchro-
nizations together ensure a consistent frame rate. Synchronization
of the buffer manager additionally ensures no frame drops. No mat-
ter how quickly an application finishes drawing, the buffer manager
transfers buffer ownership only on a sync pulse.

Synchrony in space: Noticeably, the buffer manager does not
give a BUSYdisp buffer to the application, avoiding the same buffer
being read by the display and written by an application at the same
time. This synchronous buffer access is sufficient but not necessary
to avoid tearing effects. However, the buffer manager does not have
better strategy because it has no idea about which pixels have been
changed from one frame to the next, i.e., dirty region. This strategy
makes an average latency of 0.5·Tsync due to the display refreshing
necessary because the application has to finish writing in a buffer
before the display starts to externalize it. As a result, any BUSYdisp

buffer has to wait for the next display refreshing to be sequentially
externalized, introducing an average latency of 0.5 · Tsync.

All together, we estimate the average latency due to the syn-
chrony as

3 · Tsync − (Tapp + Tout) (1)

For a typical Android application, this latency is about 34.9ms
with Tsync = 1/60 s and the 7.5ms optimization deducted. This
accounts for close to half of the latency we observe on Android
devices. One naïve way to reduce this latency is to simply re-
duce Tsync. This would not only increase power consumption sys-
temwide, but also require more expensive hardware. Our approach,
in contrast, aims at eliminating the synchrony without increasing
Tsync or requiring new hardware.

2.3 Overall latency
Considering the average latency of the input hardware (Ttouch),

we can derive the average end-to-end latency below using a similar
analysis and the assumption that Tapp ≤ Tsync:

Ttouch + 3 · Tsync (2)

of which 3·Tsync is from when the event manager receives events to
when the display finishes rendering the resulting frame (Figure 3).

If we completely eliminate the latency due to the synchrony, the
best average latency will be

(2)− (1) = Ttouch + Tapp + Tout (3)

When the input subsystem produces events faster than the appli-
cation can consume, the above best latency is unachievable because
the event manager must buffer events. With existing hardware, our
solution, Presto, adds 0.5 · Tsync of event buffering latency to the
best latency. New display systems where the display sync pulse is
configurable and adjustable at runtime, e.g., G-Sync [34], may help
reduce this even buffering latency.
1This analysis assumes Tapp ≤ Tsync. If N · Tsync < Tapp ≤
(N +1) ·Tsync, the added latency would be (N +1) ·Tsync −Tapp.

Additional latency for web applications: The above analy-
sis applies to all native applications, including web browsers. Web
applications, however, are subject to another layer of indirection
and more latency. First, a web application experiences overhead
due to scripting, leading to longer Tapp than that of native applica-
tions. The overhead includes running JavaScript and updating the
DOM tree based on its result. Modern JavaScript engines compile
JavaScript code to expedite its execution; however, an input event
has to go through multiple layers to reach the compiled code: from
the main thread in the renderer to the web engine to the DOM tree
to the JavaScript engine. Likewise, the engine’s execution results
also have to go through multiple layers in the reverse path.

Second, the browser increases the latency when subscribing a
wrong sync pulse, due to Android’s 7.5ms optimization (§2.2).
The browser synchronized with the sync pulse to produce a frame
before the next screen update. However, the 7.5ms-delayed sync
pulse makes the browser produce a frame 7.5ms after the sync
pulse and miss the next screen update. This always adds a latency
of (Tsync − 7.5ms). Presto to be presented in §3 does not cause
this issue by excluding this optimization in its design.

Finally, we must note that IPC overhead among the three parts
of a browser is negligible. The I/O subsystem sends the sync pulse
and input events via a Unix socket to the renderer, which sends
drawing commands to the graphics subsystem, via shared memory.
Both contribute negligible latency according to our measurements
on Nexus 6.

3. DESIGN OF PRESTO
We next present the design of Presto. Compared to today’s sys-

tems, Presto almost halves the latency by judiciously relaxing the
visual constraints. In particular, Presto eliminates the synchrony
in the legacy design with two key techniques, just-in-time trigger,
or JITT, and just-enough pixels, or JEP. JITT eliminates the syn-
chronization of the event and buffer managers. It aims to get as
many input events to the app as the resulting frame will be ready
by the next display refresh. The JITT buffer manager transfers the
buffer ownership to the display subsystem immediately after the
app finishes drawing, without waiting for a sync pulse. JEP and its
approximation, position-aware rendering, or PAR, further alleviate
the atomic use of buffers by judiciously allowing an app to write
into a BUSYdisp buffer that is being externalized by the display.

Visual Constraints Revisited: The key insight behind Presto
is that the three visual constraints, i.e., consistent frame rate, no
frame drop, and no tearing effect, can be judiciously traded for re-
ducing latency with better user experience. First, HCI research has
shown that many interactions on mobile devices require latency far
lower than what modern mobile devices can deliver. Ng. et al [32,
33] showed that the just-noticeable difference (JND) latency for
object dragging on the touchscreen is 2−11ms. Microsoft went
further to argue for 1ms latency for touchscreen interactions [41].

Second, the three visual goals met by the legacy design are not
absolute. For some applications and interactions, they are not nec-
essary at all, especially on modern mobile hardware and software.
Hardware improvements, i.e., faster CPU, GPU and larger mem-
ory, have enabled a consistent frame rate of 60 fps on modern mo-
bile systems. Recent studies [6, 7] have shown that users cannot
perceive changes in frame rate when it is above 30 fps. Similarly,
frame drops can be allowed if they are not consecutive and the
frame rate is kept above 30 fps. Importantly, drawing on touch-
screen usually has visual effects limited to the touched position.
Tearing effects would be barely noticeable by human eyes or even
high-speed cameras. Indeed, they are almost indistinguishable from
the effect of latency as highlighted by Figure 4.

Tearing line

Indistinguishable tearing No tearing

(ii) (iii)

dirty region

Previous frame

Next frame

Distinguishable tearing

(i)

Figure 4: Tearing effect may happen when the display switches
from one frame to the next in the middle of externalizing the first.
As a result, the screen will show the early part of the first frame and
the late part of the second, joined at the tearing line. If the tearing
line cuts a large dirty region, the tearing effect can be visible and
annoying as is in (i). If the dirty region is small, like in the cases of
drawing, the tearing effect is indistinguishable from the effect from
latency, as is in (ii), when compared to the perfect case in (iii).

time

BUSY

Underprediction

Overprediction

Application

Buffer Mgr.

Display

Event Mgr.

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜

Ev
en

ts

Sync pulse

Perfect Prediction

𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

Display Panel

FILLED

Buffer

𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

+
𝑇𝑇

Figure 5: JITT removes synchronization in the event and buffer
managers. It decides when the event manager delivers events to
the application so that the buffer manager would deliver the buffer
filled by the application right before the next display refresh. To
do so, it must predict how long it will take from the event delivery
to the buffer delivery, or T . Overprediction (T ′ > T) leads to an
increase in latency by (T ′ −T); underprediction (T ′ < T) leads to
an increase in latency by Tsync.

Finally, it can be profitable for user experience to trade these
visual goals for shorter latency. Janzen and Teather [22] showed
that latency affects user performance with touchscreen interaction
more than frame rate does. Presto also carefully drops delayed
frames in order to cut overall latency.

3.1 JITT: Just-In-Time Trigger
JITT removes synchronization in the event and buffer managers.

With JITT, the event manager judiciously decides when to deliver
buffered events to the app; and the buffer manager transfers buffer
ownership as soon as the application finishes drawing, without wait-
ing for the sync pulse. Ideally, the buffer manager would deliver the
buffer filled by the application’s response right before the next dis-
play refresh. Recall that we denote the time it takes the application
to process the events and fill the buffer as Tapp, the time it takes
the buffer manager to transfer the buffer ownership to the display
subsystem as Tout. For brevity, we denote (Tapp + Tout) as T .

In the ideal case with JITT, no events would have to wait more
than (T + Tsync) for their application response to externalize, with
average being (T + 0.5 · Tsync). This is illustrated by the perfect
prediction in Figure 5. Therefore, knowing when the display re-
freshes next, denoted by trefresh, JITT must predict T , and let the
event manager deliver the events at (trefresh−T ′) where ′ indicates
prediction.

Tapp and Tout can be easily predicted using history. Much of the
prediction algorithm is system-specific and we will revisit when
reporting the implementation (§4.1). Below, we focus on one im-
portant design issue. Inaccurate prediction increases latency of
JITT. An overprediction (T ′ > T) makes the event manager deliver
events too soon. That is, if events arrive between (trefresh − T ′)

and (trefresh − T), the corresponding frame would wait for the
screen refresh and increase the average latency by (T ′ − T). This
is illustrated by the overprediction in Figure 5. An underprediction
(T ′ < T) makes the event manager wait too long to deliver the
buffered events and as a result, the buffer manager will not be able
to transfer the resulting graphics buffer to the display subsystem
by the next display refresh, adding an entire Tsync to the average
latency. This is illustrated by the underprediction in Figure 5. Ap-
parently, the latency penalty is significantly higher in the case of
underprediction.

JITT copes with underprediction in two ways. First, it favors
overprediction between overprediction and underprediction. That
is, it looks for the upper end when using history. Moreover, with

prediction T ′, instead of triggering the event manager at (trefresh−
T ′), JITT calculates when the last event would arrive before (trefresh−
T ′) and triggers the event manager when this event arrives. This
trick essentially adds a variable offset to T ′ in favor of overpredic-
tion. Second, JITT recovers from underprediction by dropping the
frame in the buffer delayed due to underprediction. Importantly,
this recovery mechanism does not drop two frames in a row. When
underprediction happens, the buffer manager will have two FILLED
buffers when JITT triggers it: one delayed and the other newly pro-
duced. Then, the buffer manager drops the older buffer by marking
it as FREE and transfers the newer one to the display subsystem. If
JITT underpredicts one more T in a row, the buffer manager does
not drop the delayed frame anymore but propagates the delay un-
til no underprediction happens or the application stops producing
frames. The worst case is when Tapp changes abruptly and the
JITT buffer manager drops every other frame, the frame rate be-
comes half, or 30 fps on modern mobile systems.

3.2 JEP: Just-Enough Pixels
As explained in §2.1, in modern mobile systems, when an ap-

plication requests a graphics buffer, the buffer manager will give
it a FREE one. Therefore, the application cannot write into the
BUSYdisp buffer that is being externalized by the display subsys-
tem. This atomic buffer access avoids tearing but adds a latency of
0.5·Tsync on average as discussed in §2.2. JEP reduces this latency
by judiciously allowing the application to write into the BUSYdisp

buffer, without tearing.
JEP leverages partial-drawing APIs like [24, 17] and a modern

mobile display trend: an in-display memory from which the display
panel reads pixels, not directly receiving from the composer [21,
37]. The key idea is to make the atomic area smaller, i.e., the dirty
region of the new frame, and let the display subsystem take only
the dirty region to compose and update the in-display memory only
before the display panel starts externalizing the dirty region. This
is possible without tearing because a modern display externalizes
a frame sequentially, pixel by pixel and updating only the dirty re-
gion reduces the memory copy between the buffer and the display
subsystem, e.g., by 7178.0KB/s [21].

Specifically, JEP needs to answer two questions: (1) where is
the starting point of the dirty region? That is, in how many pixels
will the display externalize before reaching the dirty region? (2)
how fast is the display subsystem externalizing pixels? The use of
partial-drawing APIs answers (1). The answer to (2) is independent

of applications and can be accurately profiled. For example, in our
prototype, we find the display subsystem externalizes 221M pixels
per second.

Because most legacy mobile applications do not use the partial-
drawing APIs and not all mobile displays feature the internal mem-
ory, we next present PAR, an approximation of JEP, to support
legacy applications and displays.

3.2.1 PAR: Position-Aware Rendering
To support legacy applications and displays, PAR allows an ap-

plication to write in the BUSYdisp buffer that is being externalized
by the display subsystem. To minimize the risk of tearing effects
caused by concurrent buffer accesses, PAR must be confident that
the application would finish writing into the buffer BEFORE the
display subsystem starts externalizing a dirty region. Therefore,
in addition to the previous two questions to JEP, PAR must an-
swer a third question: how long will it take the application to finish
drawing into the buffer? Notably, the answer is essentially Tapp;
its prediction is already available from JITT as described in §3.1.
Like in JITT, underprediction is more harmful than overprediction
in PAR: underprediction risks tearing effects while overprediction
only decreases latency reduction.

To further limit tearing effects, we exploit the fact that many
applications will have visual effects and henceforth dirty regions
limited to around the touched position; and tearing in this area is
barely distinguishable from effect of latency as shown in Figure 4.
Presto will apply PAR only if the dirty region is within a prede-
fined rectangle, 200 by 200 pixels in our implementation, centered
at the latest touch point. This also simplifies the implementation.
Presto will first check if there is any change outside the rectangle
around the touch point, i.e., any dirty region outside it. If so, it
stops. Otherwise, PAR estimates if the application can finish writ-
ing before the display reaches the edge of the rectangle. If yes, it
will respond to the application with the BUSYdisp buffer.

To check if there is a dirty region outside the rectangle, PAR can
leverage help from the application, the answer to (1). For legacy
applications that do not use the partial-drawing APIs, PAR com-
pares the two adjacent frames by sampling. We discuss how we
implement it and its overhead in §4.2 and §5.2.4, respectively.

4. IMPLEMENTATION
We next describe our prototype implementation of Presto using

Android 5 (Lollipop). The implementation includes about 1125
SLOC in the input and output subsystems of Android.

In Android 5, the event manager includes a library libinput,
and a sync pulse receiver DisplayEventReceiver in Android
runtime library libandroid_runtime. Both are in an applica-
tion’s address space. In the libinput library, the InputConsumer
object receives events from the input subsystem through a Unix
socket and buffers them. InputConsumer delivers the buffered
events to the application when DisplayEventReceiver receives
a sync pulse from the display subsystem.

The buffer manager is BufferQueue, which is part of Android
GUI library libgui and allocates buffers and manages their own-
ership. Note that we use BufferQueue to refer to three classes:
Core, Producer, and Consumer. BufferQueue is indirectly syn-
chronized with the sync pulse by responding to requests from the
display subsystem. Each application window has its dedicated buffer
manager (in SurfaceFlinger’s address space for performance
reasons). As a result, BufferQueues from different applications
are independent from each other.

The display subsystem includes SurfaceFlinger, which re-
ceives FILLED buffers from multiple applications’ BufferQueues

and sets up the hardware composer. SurfaceFlinger also relays
the sync pulse from the hardware composer to the event manager.

4.1 JITT: Just-in-Time Trigger
We implement JITT by revising the event manager (libinput

and DisplayEventReceiver) and buffer manager (BufferQueue).
The predictor for Tapp tracks Tapp history and predicts based on a
simple algorithm that averages the recent 32 measurements of Tapp,
or roughly half a second. We empirically set Tout to 3.5ms based
on profiling of BufferQueue and SurfaceFlinger. The con-
stant time is conservatively determined to give SurfaceFlinger

enough time to transfer the ownership of multiple applications’
graphics buffers, from BufferQueue to the hardware composer.

To trigger the event manager, we modified DisplayEventReceiver
to intercept the sync pulse from the display subsystem and re-fire it
at the predicted time (trefresh − T ′). When BufferQueue is re-
quested to give a FILLED buffer by the SurfaceFligner, it waits
until the predicted time (trefresh − Tout) and then responds with
the latest FILLED buffer just before the next screen refresh.

4.2 PAR: Position-Aware Buffer Manager
We implement PAR by modifying BufferQueue and Android’s

ION memory manager. Recall that when the application requests a
buffer, PAR responds with the BUSYdisp buffer in the application’s
buffer manager only if it is confident that the application would fin-
ish writing into the buffer BEFORE the display subsystem starts
externalizing a dirty region. Our implementation conveniently ob-
tains the prediction of how long it will take the application to finish
writing into the buffer from JITT, i.e., T ′

app. We profile that the
display subsystem reads the BUSYdisp buffer at 221M pixels per
second.

If the application does not already provide information about
the dirty region, e.g. via an SDK like [21], our implementation
identifies the starting point of the dirty region by modifying An-
droid ION’s ioctl() syscall to compare frames in software. We
compare the frames in the kernel space because graphics buffers
are not directly accessible from the user space for security rea-
sons. BufferQueue passes a buffer’s ION fd to the kernel via
the syscall. Then, the kernel finds the corresponding memory area
represented in scatterlist [4], samples 1% of the frame, and
then compares them with those of the previous frame. One can in-
crease the number of samples to track dirty region more accurately;
however, 1% from a 2560×1440 screen (Nexus 6) is sufficient to
check the dirty regions of applications updating the entire screen,
such as animation and scroll.

5. EVALUATION
Using the prototype implementation, we aim at answering the

following questions regarding Presto.

• How effective is Presto in reducing latency? how much does
each of its two key techniques contribute?

• Is its effectiveness orthogonal to that of other popular tech-
niques, namely event prediction [3, 26, 27, 35, 40]?

• What tradeoffs does Presto make, in terms of power con-
sumption and the visual goals dear to the legacy design?

• How do end users evaluate the overall performance of Presto?

5.1 Evaluation Setup
We evaluate our implementation on Google Nexus 6 smartphones

with Android 5.0 (Lollipop) and Linux kernel 3.10.40. The smart-
phone has a 5.96′′ 2560 × 1440 AMOLED display, 2.7 GHz quad-
core CPU, and 600 MHz GPU. During the evaluation, we use a

DotPen stylus pen with a tip of 1.9mm [10], instead of finger, to
find out the touched position with high accuracy.

5.1.1 Latency Measurement
We measure the interaction latency with two methods. The first

one is indirect, by combining calibration, analysis, and OS-based
time logging. It is applicable to all applications. The second is
direct based on camera capture and video analysis. It is, however,
only applicable to applications whose visual effects are amenable to
our video analysis. We use the indirect method to report latencies
for legacy benchmarks; we use the direct method to provide in-
depth insight along with the in-house benchmark.

Indirect Measurement: The indirect measurement method breaks
down the end-to-end latency into three parts and deal with each
differently: (1) from physical touch to the touch device driver, (2)
from the touch device driver to the display subsystem, and (3) from
the display subsystem to display externalization.

We measure the latency of (1) by using a microcontroller and
two light sensors (API PDB-C142, response time: 50 us): the mi-
crocontroller continuously polls the sensor output at 1KHz. The
first light sensor besides the screen shoots a laser beam from the
other side. When the stylus pen crosses the laser beam, the micro-
controller detects the change of the light sensor output and logs a
timestamp. When the touch device driver receives an event cross-
ing the beam, it turns on the built-in LED, which takes 1.5ms. The
second light sensor, placed above the LED, detects this so that the
microcontroller logs the second timestamp. We estimate the latency
of (1) as the difference between these timestamps: 28.0±1ms.

We measure the latency of (2) by logging two timestamps in soft-
ware: when the touch device driver receives an event and when the
ownership of the resulting buffer is transferred to the display sub-
system. Notably this latency is where Presto makes a difference.

We estimate the latency of (3) based the y-coordinate of the
touch event logged in software as described above. Since the dis-
play panel illuminates pixels sequentially top-down after a sync
pulse, we estimate when the pixels of the touched area illuminate as
Tsync ·y/H where H is the screen height measured in pixel number.

Direct Measurement: For the in-house benchmark, we are able
to measure the user-perceived latency by analyzing video record.
What a camera can precisely capture are the locations: that of the
square (Ls) in response to a touch and that of the pen (Lp) in each
frame. Therefore, we estimate the velocity of the pen movement (v)
from its locations in consecutive frames. By calculating how long
it would take the pen to travel from the touched location (Ls) to the
current pen location (Lp), we obtain the latency as (Ls − Lp)/v.
This estimation, however, relies on the assumption that the velocity
of the pen does not change abruptly from frame to frame. Due to
the high frame rate, i.e., 60Hz, this assumption is largely true and
also confirmed by our own measurement.

A camera also introduces errors due to its frame rate. We use a
Nikon D5300 camera with 60 Hz frame rate and 1/500 sec shutter
speed. The frame rate would introduce a random latency uniformly
distributed between 0 to 16.7ms (Tsync). Therefore, we deduce
this random variable when reporting the latency measurement.

We compare the latency derived from the indirect measurement
of the in-house application against with its direct measurement with
stock Android, Presto (JITT) and Presto (JITT+PAR). The both
measurements are within 2.5ms from each other. The difference
is smaller than their standard deviation and more importantly, one
order of magnitude smaller than the latency reduction by Presto.

5.1.2 Benchmarks
We evaluate Presto with both legacy applications and an in-

house application. The legacy applications include ten native draw-
ing applications: the top five each from the Drawing & Handwrit-
ing and Calligraphy categories of the Google Play Store on Jan 26,
2016. Not surprisingly, we could not find many web applications
for Android Chromium that support drawing: the latency is too
long for good user experience. In the end, we found three and in-
cluded all for evaluation. For these applications, we measure the
latency using the indirect method. The five from Drawing & Hand-
writing are Notepad+ Free (N+), Autodesk Sketch (AD), Handrite
Note (HN), Bamboo Paper (BP), and MetaMoJi Note Lite (MM). The
five from Callligraphy are Calligraphy HD (CY), Calligrapher (CR),
INKredible (IK), Brush Pen (BP), and HandWrite Pro Note (HP). The
three web applications are DeviantArt Muro (MR), Literally Canvas
(LC), and Zwibbler (ZB). We note that our benchmarks exclude ap-
plications that update a frame without a user event, e.g., games.
This is because the indirect measurement method must associate a
frame update with a user event.

We also employ several in-house native and web applications
that have an identical design. The native ones are implemented for
both Android and iOS using OpenGL ES 2.0. The web applica-
tion uses HTML5 canvas element. All implementations draw a
115×115 square and a horizontal line on a touched position. As
the pen moves, it drags the square and line along. These applica-
tions are valuable for three reasons. (i) They allow us to understand
the accuracy of the indirect measurement of legacy applications as
reported in [44]. (ii) They allow us to compare our Android-based
Presto prototype with iPad Pro with Apple Pencil, a cutting-edge
touch device commercially available, using the same OpenGL ES
code base. (iii) Because the application has bare minimum func-
tionality for touch interaction, it allows us to better understand the
power overhead of Presto.

5.1.3 Interaction and Trace Collection
Short of a programmable robotic arm, we try our best to pro-

duce repeatable traces of interaction with the benchmarks. For
each benchmark, we interact by manually moving the pen repeat-
edly from one end of the screen to the other vertically in portrait
orientation, with a steady speed for 150 seconds. Post collection
analysis shows an average speed of 68mm per second, with a stan-
dard deviation of 12. All traces are available at [1].

5.2 Latency Reduction by Presto
We next answer the three questions about the latency reduction

by Presto: how much is it? how is it related to that from other
techniques? what does Presto trade for it? The measurement
shows that Presto with JITT only and with (JITT+PAR) reduces
the average latency of our benchmarks from 72.7ms to 54.4ms
and 41.0ms, respectively. This reduction eliminates all latency
from synchronization. Moreover, as we anticipated, the reduction
from Presto is orthogonal from that of another important tech-
nique, touch prediction, employed by iPad Pro. When combined
with touch prediction of 30ms, Presto is able to reduce the la-
tency of our in-house application below 10ms.

5.2.1 Presto reduces latency by 32ms

Figure 6 shows how much each of the two techniques reduces the
latencies of legacy applications. On average, Presto reduces the la-
tency by 32ms. To appreciate the significance of this reduction, we
note that Deber et al [8] showed that even a small latency reduction,
i.e. 8.3ms, brings a perceptible effect in touchscreen interactions.
Latency reduction for some applications, e.g., Autodesk(AD), is
larger than average latency caused by the synchrony, i.e., 34.9ms
(§2.2). This is because when an application occasionally fails to

N+ AD HN BP MM CY CR IK BP HP MR LC ZW
0

20

40

60

80

L
a
te

n
c
y
 (

m
s
)

Native Apps Web Apps

Stock Presto (JITT) Presto (JITT+PAR)

Figure 6: Presto consistently reduces the latency of the legacy
benchmarks, by 32ms on average.

finish drawing by the next display refresh, JITT drops this delayed
frame while stock Android keeps it and propagates the delay to all
subsequent frames. The frame drop by Presto is not perceptible to
users as we will see in§5.3.

Notably, different benchmarks see different reductions in latency
from Presto. Presto is most effective for those that have large la-
tency to begin with, i.e., Autodesk (AD), Calligraphy (CY), Calligra-
pher (CR), and Brush (BP). Presto is the least effective for MetaMoji
(MM), reducing the latency by 17.6ms only. Our analysis reveals
that this is because its average Tapp is the longest among all bench-
marks. As a result, it has the shortest latency due to synchronization
and gives Presto the least opportunity.

Generally, the latency reductions on the web applications are
smaller than native applications because the browser’s web engine
takes longer Tapp. Specifically, the latency reductions on Literally
Canvas (LC) and Zwibbler (ZB) are smaller than DeviantArt Muro
(MR) because their web pages are heavier.

5.2.2 Presto beats iPad Pro
Using our in-house native application, we are able to compare

Presto on Nexus 6 with iOS on iPad Pro, the state-of-the-art touch
device widely in use. iPad Pro employs two techniques to reduce
the latency. First, it doubles the input sampling rate for Apple Pen-
cil [2], from 120 Hz to 240 Hz, to reduce latency. Second, the
iOS SDK provides predicted events for the next frame (16ms),
a technique called touch prediction [40], which hides the latency.
Importantly, both techniques reduce the latency impact by Ttouch

in Equation 2, which makes Presto complementary. The doubled
sampling rate reduces it by 8ms, and the touch prediction further
reduces it by 16ms as shown in the left column of Figure 7. Be-
cause neither technique is available on Android, we measure the in-
house application on iPad Pro with four configurations as reported
in the left column of Figure 7: normal stylus pen without touch
prediction, Apple Pencil without touch prediction, normal stylus
pen with touch prediction, and Apple Pencil with touch prediction.
The results clearly show that both the faster input sampling rate
and touch prediction help reduce the latency for iPad Pro, with the
best latency being 42.9ms. Impressively, Presto is able to reduce
Android’s latency to even lower, 33.0ms, even without fast input
sampling or touch prediction.

For the in-house web application, Presto reduces its latency to
55.5ms, below all iPad Pro configurations except Apple Pencil
with Touch Prediction. This is because the web application has
a long latency to begin with.

5.2.3 Presto brings orthogonal benefits
In principle, the effectiveness of Presto is orthogonal to that

of faster input and touch prediction because Presto eliminates la-
tency resulting from synchronization, i.e., Equation 1, and the lat-
ter primarily reduce latency resulting from the input hardware, i.e.,
Ttouch in Equation 2. With our in-house application, we imple-

ment touch prediction that predicts into the future from 0 to 32ms.
Presto reduces the latency by eliminating the synchronization points.
Figure 8 shows how Presto and touch prediction complementarily
reduces the latency. The leftmost group in the figure does not have
predicted events, i.e., touch prediction of 0ms. Clearly, for touch
prediction of various time, Presto demonstrates almost the same
effectiveness in latency reduction. Interestingly, Presto with touch
prediction of about 30ms is able to reduce the average latency be-
low 10ms, a rather remarkable achievement by a software-only
solution.

5.2.4 Tradeoffs by Presto
Presto trades off other computing goals for short latency: it judi-

ciously allows frame drops and tearing, and may incur power over-
head through PAR. When we try out the benchmarks with Presto,
we could not see any effects usually associated with frame drops
or tearing. Our double-blind user study, reported in §5.3, confirms
this independently. Below we report objective data regarding frame
drops, tearing risk, and power overhead.

By design, Presto guarantees no consecutive frame drops. In the
worst case, it would drop 50% of the frames (every other frame).
Our measurement, reported in Figure 9, shows a much lower rate
for our benchmarks, with the worst case being 8% (Bamboo (BP)).

There is no direct way we could observe the occurrences of tear-
ing: as shown in Figure 4, even if tearing happens and is captured
by camera, it would be extremely hard to tell it from the effect of
latency. Instead, we measure how frequent underprediction of Tapp

happens. As shown in §3.2.1, an underprediction of Tapp is a nec-
essary but not sufficient condition for tearing to happen. Therefore,
the frequency of underprediction can be considered as an upper
bound for that of tearing. Figure 9 shows the frequencies of un-
derprediction for the legacy benchmarks. HandWrite (HP) has the
highest frequency of underprediction (17%). Bamboo (BP) has the
highest frequency (13%) amongst the five benchmarks used in the
user study. These frequencies are at most suggestive of how often
tearing may happen. None of the authors could see any effects due
to tearing; nor did the participants in our user study.

We use a Monsoon Power Monitor [30] to measure the power
consumption of Presto in Nexus 6. We disable all wireless com-
munications and dim the LCD backlight to the minimum level. We
measure the power consumption of the in-house application dur-
ing 60 seconds of touchscreen drawing for each of the follow-
ing configurations: without Presto, with Presto (JITT), Presto
(JITT+PAR without frame comparison), and Presto (JITT+PAR).
Their power consumption and standard deviations are 2017± 120,
2075± 115, 2024± 110, and 2564± 201 mW, respectively.

We would like to highlight two points regarding the power over-
head. First, JITT increases the power consumption only slightly,
well below the standard deviation. PAR (without frame compari-
son) decreases the power consumption to be barely indistinguish-
able from that of the stock Nexus 6, i.e. 2024 ± 110 vs. 2017 ±
120. This is because PAR reduces activities of the buffer man-
ager. Second, the frame comparison needed for PAR contributes
most of the power overhead, an 27% increase. Because in our
measurement we disabled all wireless interfaces and dimmed the
LCD backlight to minimum, the percentage increase for real-world
usage will be much lower. More importantly, using frame com-
parison to determine the dirty region is not practically necessary
because the GPU and application already have the information.
Some SDKs, e.g.,[14], already make this information available via
an API, e.g., invalidate(Rect dirty). With such APIs, this
overhead would be eliminated.

Normal
Pen

Apple
Pencil

Normal
Pen

+Predict

Apple
Pencil

+Predict

Stock Presto
(JITT)

Presto
(JITT+PAR)

Stock Presto
(JITT)

Presto
(JITT+PAR)

0

20

40

60

80

100
L
a
te

n
c
y
 (

m
s
) Android native Android webiOS native

Figure 7: Latency of our in-house app: iOS native, Android native,
and web on Android. Presto reduces the latency of Android native
and web versions below that of iOS native even with Apple Pencil
(and touch prediction for Android native).

0 4 8 12 16 20 24 28 32

User event prediction (ms)

0

20

40

60

80

L
a
te

n
c
y
 (

m
s
) Stock

Presto (JITT)

Presto (JITT+PAR)

Figure 8: Latency of Presto plus touch prediction for our in-house
application: the effectiveness of Presto is complementary to that
of touch prediction. X axis is the time into the future predicted.

5.3 User Evaluation
When we try the benchmarks with Presto, it is visually obvious

that Presto reduces latency significantly. None of the authors are
able to notice any tearing effects or frame drops. Nevertheless,
In defense against any possible experimenter’s bias, we perform a
double-blind user study to evaluate Presto subjectively.

We recruited 11 participants via campus-wide flyers. They were
students and staff members from various science and engineering
departments, between 19 and 40 years old, with three women. All
had at least two-month experience with an Android device with a
display bigger than 5.5 inches.

Each participant came to the lab by appointment and was given
two Nexus 6 smartphones that are identical except one has stock
Android, the other Presto. The smartphones are marked A and
B, respectively. Neither the participant nor the study administrator
knew which one is stock. The participant was then asked to use
their finger or a stylus pen to try out the five top Android appli-
cations from Drawing & Handwriting. They were allowed to try as
long as they wished; and all finished in 10 to 45 minutes. After each
application, the participant answered three questions: (i) which de-
vice is faster: A, B or same? (ii) if you chose A or B, to what extent
do you agree with the statement that the latency difference is ob-
vious? (1 to 5 with 1 being strongly disagree and 5 being strongly
agree) (iii) other than the latency, describe any difference you ob-
serve. For post-mortem analysis, we recorded the hand-smartphone
interaction of all except two participants with a GoPro Hero 4 cam-
era at 240Hz. The recordings are available from [1].

5.3.1 Findings: quantitative and qualitative
Figure 10 presents participants’ answers to the first question. Not

surprisingly, more than half of the participants consider Presto to
be faster in each of the benchmarks. For Autodesk (AD), 10 out
of 11 participants considers Presto is faster. This corroborates the
measurement presented in Figure 6, which shows Audtodesk (AD)
sees the largest latency reduction amongst the five. To our surprise
and puzzlement, a same participant reported the stock Android is
faster in Notepad+ (N+) and Bamboo (BP). We checked the video
record, and it was obvious to us that Presto was clearly faster in
both the applications. One theory to explain this is that the par-
ticipant mistook A with B when answering the question. Never-
theless, we are wary that the same theory can be used to argue the
participant’s responses for the other three applications were also
mistaken. Overall, the data suggests that participants overwhelm-
ingly felt that Presto is faster. For those who considered Presto
to be faster, the average of their responses to the second question is
3.5, indicating the latency difference is obvious to them.

Our participants were asked if they observe any difference be-
yond latency. None reported any effects that may result from in-
consistent frame rate, frame drop, or tearing, such as application’s

fluctuating response time, screen flickering, and screen overlap. In-
deed most of their comments are about secondary effects due to
latency difference. Two participants did notice some details about
how Presto actually works. One remarked about MetaMoji (MM)
that Presto “seems to catch up quicker than” the stock Android.
The other observed similar effects with Autodesk (AD) but worded
it differently: the stock Android has “smooth curves;” Presto is
“not as soft as” the stock Android. By that, the participant was re-
ferring to the same effect that when drawing a line, the line with
Presto sometimes jumps to the touch point, or “catch up quicker”
in the words of the first participant.

Sample size: 11 participants are not many. The question is: is
our conclusion that Presto is faster statistically significant? We use
dependent t-test for paired samples to analyze the statistical signif-
icance of the answers to the first question shown in Figure 10. The
dependent t-test [45] is used to calculate the probability (p) of sam-
pling error when the same subjects are exposed to both samples
(applications on stock Android and Presto). For each benchmark,
we count how many people considered that on Presto is faster and
calculated p using the dependent t-test. Since p < 0.01, the differ-
ence is statistically significant.

6. RELATED WORK
Latency has long been recognized as a key to user experience.

There is a rich body of literature that goes back to more than half a
century ago. In addition to those that have already been discussed,
we discuss five groups of recent works as related to Presto. To
our best knowledge, Presto would be the first in the public domain
that identifies synchrony in the operating system design as a major
source of latency and eliminates it.

Resource Management: A faster computer reduces the applica-
tion execution time (Tapp + Tout) (§2.2). The authors of [12, 23,
11, 13, 43] favor interactive applications in OS resource manage-
ment to reduce their execution time. Many others, e.g., [19, 20, 18],
leverage cloud or cloudlet to improve the interactive performance
of mobile applications. Because these solutions do not reduce the
latency due to the synchrony, they are complementary to Presto:
they reduce latency when (Tapp + Tout) > Tsync while Presto is
most effective when (Tapp + Tout) < Tsync. Additionally, when
(Tapp+Tout) < Tsync, these solutions improve the opportunity for
Presto by reducing Tapp + Tout as in Equation 1.

Speculation: Event prediction and speculative execution have
also been studied to conceal latency. Event prediction, or touch
prediction in Apple’s term, is widely used for virtual reality with
the head mounded display. To compensate for prediction errors,
researchers have explored speculative execution [28] and post im-
age processing [29]. All these solutions, as discussed in §5.2.3, are
complementary to Presto.

N+ AD HN BP MM CY CR IK BP HP MR LC ZW
0

5

10

15

%
Native Apps Web Apps

Dropped frames Underprediction

Figure 9: Presto occasionally experiences frame drops and un-
derprediction.

N+ AD HN BP MM
0

2

4

6

8

10

N
u
m

b
e
r

o
f

p
e
o
p
le Stock is faster

Presto is faster

Same

Figure 10: Number of participants answering Question (i) in each
of the three ways: which device is faster: A, B or same?

Specialized Hardware: As part of a testbed for studying touch
latency, Ng et al. report an ultra-low latency touch system [33, 32]
that achieves a latency as short as 1ms. The system employs a
proprietary touch sensor with a very high sampling rate (1KHz),
FPGA-based low-latency (0.1ms) data processing, and an ultra-
high speed digital light projector (32 000 fps). With completely
custom software and hardware, it is not feasible for mobile systems,
let alone supporting any legacy applications as Presto does.

Alternatives to VSync: Games on non-mobile devices often pro-
vide an asynchronous, or vsync-off, mode to reduce latency. In
the vsync-off mode, the event manager delivers input events to the
game whenever the latter is ready; otherwise, the manager buffers
the events. Similarly, the buffer manager changes graphics buffers’
ownership without waiting for a sync pulse, even when the display
is reading. This vsync-off mode, unfortunately, can introduce tear-
ing effects anywhere on the screen [36] because it blindly ignores
the sync pulses. JITT avoids this problem by changing graphics
buffers’ ownership only when a sync pulse is fired; PAR checks
dirty regions and confines the tearing effects, if any, to a small area
under the touch position.

NVIDIA’s G-Sync [34] reduces latency in a way very similar
to JITT but requires proprietary GPU and display. JITT times the
event manager carefully so that the resulting frame will be ready to
display right before the next sync pulse. In contrast, a G-Sync GPU
generates a sync pulse when it finishes rendering to synchronize the
event and buffer managers, and the display. On the other hand, PAR
and G-Sync are complementary. With G-Sync, PAR can calculate
backwards when the display should refresh to reach a dirty region
immediately after the region is rendered. When combined with G-
Sync, Presto can control the display refresh and reduce the event
manager’s buffering latency from 0.5 · Tsync (§2.3) to 0.5 · (Tapp +

Tout) on average.

7. CONCLUDING REMARKS
In this work, we identify synchrony in modern mobile systems as

a major source of latency. We present Presto, an asynchronous de-
sign for user interaction. By focusing on the main application and
relaxing conventional requirements of no frame drop and no tear-
ing effects, Presto is able to eliminate much of the latency from
synchrony. By carefully guarding against consecutive frame drops
and limiting the risk of tearing to a small region around the touch
point, Presto is able to reduce their visual impact to barely notice-
able. Using a prototype realization, we show that Presto is able
to reduce the latency of legacy Android applications by close to
half; and more importantly, we show this reduction is orthogonal to
other popular approaches. When combined with touch prediction,
Presto is able to reduce the touch latency below 10ms, a remark-
able achievement without any hardware support.

Below we offer some thoughts about future directions and how
Presto may be adopted/deployed.

Latency due to Input Hardware: Presto is able to reduce the
average latency from about 70ms to 40ms. Where does the rest
of latency come from? Our investigation has pointed to the inside
of the input subsystem, which contributes about 30ms in Android
systems. This includes the hardware time for scanning capacitance
changes on the touch sensor, converting analog signals to digital,
and communicating to the CPU [25]. This latency can be reduced
in two ways. First, exemplified by Apple Pencil, is to increase the
input sampling rate, whose effectiveness is shown in Figure 7. The
more effective way, however, is touch prediction, as exemplified by
iOS 9, whose effectiveness is shown in Figure 7 and Figure 8.

A Reflection on Best Practice: While synchrony is a major source
of latency for all applications and Presto works for unmodified
legacy applications, it is not a panacea. This is particularly true
for PAR, which risks tearing effects in a small region around the
touch point. While it so happens none of the benchmarks used in
your evaluation would manifest tearing to human eyes, it is also
easy for the authors to imagine an application that will, e.g., one
that displays the coordinate of touch next to the touch point.

Therefore, instead of applying Presto blindly to all applications,
the application developer and the end user should make the call.
Presto can perfectly co-exist with the traditional design and be
applied to applications selectively. Indeed, it is perfectly fine to
enable Presto only for certain features of an application or turn it
on and off at runtime [44].

The slight power overhead of PAR, due to the dirty region deter-
mination by frame comparison, is another factor that the developer
and end user should consider. Concerned with this overhead, the
developer should either disable it or disclose the dirty region infor-
mation using APIs supported by SDK like [14]. The end user or the
operating system on behalf of them should decide if such overhead
is acceptable based on user preference and energy availability.

ACKNOWLEDGEMENTS
This work was supported in part by NSF Award CNS #1422312.
The authors thank Pu Dong and Abeer Javed who administrated
the double-blind user study.

8. REFERENCES
[1] RECG download page. http://download.recg.org.
[2] Apple. Apple pencil.

http://www.apple.com/apple-pencil.
[3] T. Asano, E. Sharlin, Y. Kitamura, K. Takashima, and

F. Kishino. Predictive interaction using the delphian desktop.
In Proc. ACM UIST, 2005.

[4] J. E. Bottomley. Dynamic dma mapping using the generic
device. https://www.kernel.org/doc/Documen
tation/DMA-API.txt.

[5] I. Ceaparu, J. Lazar, K. Bessiere, J. Robinson, and
B. Shneiderman. Determining causes and severity of

http://download.recg.org
http://www.apple.com/apple-pencil
https://www.kernel.org/doc/Documentation/DMA-API.txt
https://www.kernel.org/doc/Documentation/DMA-API.txt

end-user frustration. International Journal of
Human-Computer Interaction, 2004.

[6] K. T. Claypool and M. Claypool. On frame rate and player
performance in first person shooter games. Multimedia
Systems, 2007.

[7] M. Claypool, K. Claypool, and F. Damaa. The effects of
frame rate and resolution on users playing first person
shooter games. In Electronic Imaging. Int. Society for Optics
and Photonics, 2006.

[8] J. Deber, R. Jota, C. Forlines, and D. Wigdor. How much
faster is fast enough?: User perception of latency & latency
improvements in direct and indirect touch. In Proc. ACM
CHI, 2015.

[9] D. E. Dilger. Agawi TouchMark contrasts iPad’s fast screen
response to laggy Android tablets. http:
//appleinsider.com/articles/13/10/08/ag
awi-touchmark-contrasts-ipads-fast-scree
n-response-to-laggy-android-tablets, 2013.

[10] Dot-Tec. Dot pen. http://dot-tec.com.
[11] Y. Endo and M. Seltzer. Improving interactive performance

using TIPME. In Proc. ACM SIGMETRICS, 2000.
[12] Y. Endo, Z. Wang, J. B. Chen, and M. I. Seltzer. Using

latency to evaluate interactive system performance. In Proc.
USENIX OSDI, 1996.

[13] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole.
Supporting time-sensitive applications on a commodity OS.
In Proc. USENIX OSDI, 2002.

[14] Google. GLSurfaceView.
http://developer.android.com/reference/
android/opengl/GLSurfaceView.html.

[15] Google. Graphics architecture.
http://source.android.com/devices/graph
ics/architecture.html.

[16] Google. Implementing graphics. http://source.and
roid.com/devices/graphics/implement.html.

[17] Google. invalidate(). https://developer.android.
com/reference/android/view/View.html.

[18] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke,
and Z. M. Mao. Accelerating mobile applications through
Flip-Flop replication. In Proc. ACM MobiSys, 2015.

[19] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and
X. Chen. COMET: Code offload by migrating execution
transparently. In Proc. USENIX OSDI, 2012.

[20] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive assistance.
In Proc. ACM MobiSys, 2014.

[21] M. Ham, I. Dae, and C. Choi. LPD: Low power display
mechanism for mobile and wearable devices. In Proc.
USENIX ATC, 2015.

[22] B. F. Janzen and R. J. Teather. Is 60 fps better than 30?: The
impact of frame rate and latency on moving target selection.
In Proc. ACM CHI, 2014.

[23] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU reservations
and time constraints: Efficient, predictable scheduling of
independent activities. In Proc. ACM SOSP, 1997.

[24] Khronos Group. glScissor().
https://www.khronos.org/opengles/sdk/doc
s/man/xhtml/glScissor.xml.

[25] S. Kolokowsky and T. Davis. Not All Touchscreens are
Created Equal - How to ensure you are developing a world
class touch product. Planet Analog:
http://www.cypress.com/file/98261, 2010.

[26] E. Lank, Y.-C. N. Cheng, and J. Ruiz. Endpoint prediction
using motion kinematics. In Proc. ACM CHI, 2007.

[27] J. J. LaViola. Double exponential smoothing: An alternative
to Kalman filter-based predictive tracking. In Proc.
Eurographics Wrkshp. Virtual Environments, 2003.

[28] K. Lee, D. Chu, E. Cuervo, Y. Degtyarev, S. Grizan, J. Kopf,
A. Wolman, and J. Flinn. Outatime: Using speculation to
enable low-latency continuous interaction for mobile cloud
gaming. In Proc. ACM MobiSys, 2015.

[29] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3D
warping. In Proc. SIGGRAPH Symp. Interactive 3D
Graphics and Games (I3D), 1997.

[30] Monsoon. Monsoon power monitor.
https://www.msoon.com.

[31] Mozilla. Off main thread compositing.
https://wiki.mozilla.org/Platform/GFX/Of
fMainThreadCompositing, 2015.

[32] A. Ng, M. Annett, P. Dietz, A. Gupta, and W. F. Bischof. In
the blink of an eye: Investigating latency perception during
stylus interaction. In Proc. ACM CHI, 2014.

[33] A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and P. Dietz.
Designing for low-latency direct-touch input. In Proc. ACM
UIST, 2012.

[34] NVIDIA. G-sync. http://www.geforce.com/hard
ware/technology/g-sync, 2014.

[35] P. T. Pasqual and J. O. Wobbrock. Mouse pointing endpoint
prediction using kinematic template matching. In Proc. ACM
CHI, 2014.

[36] T. Petersen. GPU boost 3 and SLI.
https://www.technopat.net/sosyal/konu/vi
deo-what-is-nvidia-fast-sync.329258, 2016.

[37] E. Petillon. Demystify DSI I/F: http:
//www.ti.com/lit/an/swpa225/swpa225.pdf.
Texas Instruments, 2012.

[38] S. C. Seow. Designing and engineering time: The
psychology of time perception in software, chapter 3.
Addison-Wesley Professional, 2008.

[39] The Chromium Projects. Multi-process architecture.
https://www.chromium.org/developers/desi
gn-documents/multi-process-architecture,
2008.

[40] P. Tsoi and J. Xiao. Advanced touch input on iOS: Increasing
responsiveness by reducing latency. The Apple Worldwide
Developers Conference https://developer.apple.
com/videos/play/wwdc2015/233, 2015.

[41] C. Velazco. Microsoft envisions a future with super-fast
touchscreens. http://techcrunch.com/2012/03/
09/microsoft-demos-super-fast-touchscre
en-but-will-they-ever-make-it-to-market,
2012.

[42] WebKit. Webkit2 - high level document.
https://trac.webkit.org/wiki/WebKit2, 2016.

[43] T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B. Moss.
Redline: First class support for interactivity in commodity
operating systems. In Proc. USENIX OSDI, 2008.

[44] M. H. Yun, S. He, and L. Zhong. Polypath: Supporting
multiple tradeoffs for interaction latency. arXiv preprint
arXiv:1608.05654, 2016.

[45] D. W. Zimmerman. A note on interpretation of the
paired-samples t test. Journal of Educational and Behavioral
Statistics, 22(3):349–360, 1997.

http://appleinsider.com/articles/13/10/08/agawi-touchmark-contrasts-ipads-fast-screen-response-to-laggy-android-tablets
http://appleinsider.com/articles/13/10/08/agawi-touchmark-contrasts-ipads-fast-screen-response-to-laggy-android-tablets
http://appleinsider.com/articles/13/10/08/agawi-touchmark-contrasts-ipads-fast-screen-response-to-laggy-android-tablets
http://appleinsider.com/articles/13/10/08/agawi-touchmark-contrasts-ipads-fast-screen-response-to-laggy-android-tablets
http://dot-tec.com
http://developer.android.com/reference/android/opengl/GLSurfaceView.html
http://developer.android.com/reference/android/opengl/GLSurfaceView.html
http://source.android.com/devices/graphics/architecture.html
http://source.android.com/devices/graphics/architecture.html
http://source.android.com/devices/graphics/implement.html
http://source.android.com/devices/graphics/implement.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://www.khronos.org/opengles/sdk/docs/man/xhtml/glScissor.xml
https://www.khronos.org/opengles/sdk/docs/man/xhtml/glScissor.xml
http://www.cypress.com/file/98261
https://www.msoon.com
https://wiki.mozilla.org/Platform/GFX/OffMainThreadCompositing
https://wiki.mozilla.org/Platform/GFX/OffMainThreadCompositing
http://www.geforce.com/hardware/technology/g-sync
http://www.geforce.com/hardware/technology/g-sync
https://www.technopat.net/sosyal/konu/video-what-is-nvidia-fast-sync.329258
https://www.technopat.net/sosyal/konu/video-what-is-nvidia-fast-sync.329258
http://www.ti.com/lit/an/swpa225/swpa225.pdf
http://www.ti.com/lit/an/swpa225/swpa225.pdf
https://www.chromium.org/developers/design-documents/multi-process-architecture
https://www.chromium.org/developers/design-documents/multi-process-architecture
https://developer.apple.com/videos/play/wwdc2015/233
https://developer.apple.com/videos/play/wwdc2015/233
http://techcrunch.com/2012/03/09/microsoft-demos-super-fast-touchscreen-but-will-they-ever-make-it-to-market
http://techcrunch.com/2012/03/09/microsoft-demos-super-fast-touchscreen-but-will-they-ever-make-it-to-market
http://techcrunch.com/2012/03/09/microsoft-demos-super-fast-touchscreen-but-will-they-ever-make-it-to-market
https://trac.webkit.org/wiki/WebKit2

	Introduction
	Understanding Latency
	From an event to the display
	Synchrony introduces latency
	Overall latency

	Design of Presto
	JITT: Just-In-Time Trigger
	JEP: Just-Enough Pixels
	PAR: Position-Aware Rendering

	Implementation
	JITT: Just-in-Time Trigger
	PAR: Position-Aware Buffer Manager

	Evaluation
	Evaluation Setup
	Latency Measurement
	Benchmarks
	Interaction and Trace Collection

	Latency Reduction by Presto
	Presto reduces latency by 32 ms
	Presto beats iPad Pro
	Presto brings orthogonal benefits
	Tradeoffs by Presto

	User Evaluation
	Findings: quantitative and qualitative

	Related Work
	Concluding Remarks
	References

