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Abstract— We propose an algorithm for efficient threshold
network synthesis of arbitrary multi-output Boolean functions.
Many nanotechnologies, such as resonant tunneling diodes
(RTDs), quantum cellular automata (QCA), and single electron
tunneling (SET), are capable of implementing threshold logic
efficiently. The main purpose of this work is to bridge the current
wide gap between research on nanoscale devices and research
on synthesis methodologies for generating optimized networks
utilizing these devices.

While functionally-correct threshold gates and circuits based
on nanotechnologies have been successfully demonstrated, there
exists no methodology or design automation tool for general
multi-level threshold network synthesis. We have built the first
such tool, ThrEshold Logic Synthesizer (TELS), on top of an
existing Boolean logic synthesis tool. Experiments with 56 multi-
output benchmarks indicate that, compared to traditional logic
synthesis, upto 80.0% and 70.6% reduction in gate count and
interconnect count, respectively, is possible with the average being
22.7% and 12.6%, respectively. Furthermore, the synthesized
networks are well-balanced structurally. The novelty of this
work lies in the introduction of the first comprehensive synthesis
methodology and tool for general multi-level threshold logic
design.

Index Terms— Design automation, logic synthesis, QCA, RTD,
threshold networks.

I. I NTRODUCTION

T HE Semiconductor Industries Association (SIA) roadmap
[1] predicts that complementary metal-oxide semicon-

ductor (CMOS) chips will continue to fuel the need for
high-performance systems for another10–15 years. However,
advancements in electronic materials and devices have created
nanoscale devices (RTDs, QCA, SETs, to name a few) that
have novel structures and properties. Such devices offer the
opportunity to further improve the compactness and speed of
very large scale integrated (VLSI) systems. While it is easy to
implement Boolean gates using CMOS, it is easier for many
nanoscale devices to implement threshold gates.

As progress is made in the material and physical un-
derstanding of nanoscale devices, research must be done
at the logic level to fully harness the potential offered by
these devices. When CMOS was still in its infancy in the
1980s, researchers began to develop computer-aided design
methodologies for it so that CMOS VLSI systems could be
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designed, synthesized, and tested in a reasonable time. The
current CMOS dominance can partially be attributed to such
developments. Today, nanotechnologies are in their infancy
and the development of design automation methodologies for
them is crucial if any of them is to be widely used. Among
the various existing nanoscale devices [2]–[7], RTDs [4]–
[6], QCA, and SET [7] are three promising nanotechnologies
that are of particular interest to us because they implement
threshold gates efficiently.

A threshold gate can be realized using RTDs and het-
erostructure field-effect transistors (HFETs), as shown by the
circuit in Fig. 1(a). This circuit is called a monostable-bistable
transition logic element (MOBILE) [8], [9]. A MOBILE is
a rising edge-triggered, current-controlled gate. It consists of
serially-connected load and driver RTDs. The RTD-HFETs
connected in parallel to the load and driver RTDs perform
a positive and negative weighting of the inputs, respectively.
The output is logic1 if the sum of the weighted inputs is
greater than or equal to a threshold. Otherwise, it is logic0.

A QCA cell contains four quantum dots and two mobile
electrons. Due to Coulombic interactions, the electron pair
assumes one of the two configurations shown in Fig. 1(b).
These configurations may be interpreted as digital states. A
majority gate, also shown in Fig. 1(b), is a primitive gate in
QCA that implements the functionM(A,B,C) = AB∨BC∨
AC. Majority gates are just a special case of threshold gates.

Circuits containing threshold gates have been demonstrated.
The use of SET technology to implement such circuits has
been described in [10], [11]. RTD-based threshold gates have
been widely studied in [5], [8], [12]–[14]. However, the
commercial application of threshold logic is very limited. The
main reason is that the approach taken to design such circuits is
a full-custom methodology. Furthermore, there exists no multi-
level threshold network synthesis tool. As mentioned in [15],
the usefulness of threshold gates will be determined not only
by its availability, cost, and capabilities of its basic building
blocks, but significantly more by the existence of automatic
synthesis tools that could take advantage of them.

In this paper, we present the first comprehensive methodol-
ogy for multi-level threshold logic synthesis and optimization
from a Boolean logic description. Fig. 2 shows the CMOS
and threshold logic design flows. Once a threshold network
has been synthesized, it can be mapped onto a specific target
nanotechnology. Our methodology takes into account defect
tolerances in the input weights, and the fanin restriction
on a threshold gate. Taking these parameters into account
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Fig. 1. Example of two nanotechnologies that implement threshold gates.

improves the robustness of the synthesized network. While
synthesizing, node sharing (i.e., fanout node) is also preserved
and thus, any advantage that is gained by preprocessing the
network through a Boolean logic synthesis tool remains. The
synthesized network is optimized in terms of gate count. The
novel contributions of this work are as follows:

• This is the firstcomprehensivemethodology for multi-
level multi-output threshold network synthesis.

• Based on our methodology, we have built a threshold
network synthesis tool on top of an existing Boolean logic
synthesis tool.

• We formulate new theorems that describe properties of
threshold logic and use them to our advantage in our
methodology.

The remainder of this paper is organized as follows. In Sec-
tion II, we present background material and discuss previous
work in threshold logic synthesis. In Section III, we present
an example to motivate the need for a threshold network
synthesis methodology. In Section IV, we propose and prove
several theorems on the properties of threshold logic. We then
describe our synthesis methodology and its implementation in
detail in Section V. We also discuss technology mapping based
on MOBILEs in this section. In Section VI, we present our
experimental results and conclude in Section VII.

II. BACKGROUND AND PREVIOUS WORK

In this section, we describe some preliminary concepts to
help the reader understand our proposed methodology better
in later sections. Previous work in threshold logic synthesis is
also presented in this section.
A. Threshold Logic

A linear threshold gate(LTG) has l two-valued inputs,
xi ∈ {0, 1}, and a single two-valued outputf . Its internal
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Fig. 2. Conventional CMOS and threshold logic design flows.

parameters are a thresholdT and weightswi, i ∈ {1, 2, . . . l},
where weightwi is associated with a particular input variable
xi. The input-output relation of an LTG is based on the fact
that outputf assumes the value 1 when the weighted sum of
the inputs equals or exceeds the value of the threshold,T , and
assumes the value 0 otherwise [16]. That is,

f(x1, x2, . . . , xl) =

{
1 if

∑l
i=1 wixi ≥ T

0 if
∑l

i=1 wixi < T.
(1)

The weights and threshold of the LTG can be represented by
the weight-threshold vector〈w1, w2, . . . , wl;T 〉. If we want to
increase the robustness of the LTG, we can incorporate defect
tolerances into the definition as follows:

f(x1, x2, . . . , xl) =

{
1 if

∑l
i=1 wixi ≥ T + δon

0 if
∑l

i=1 wixi ≤ T − δoff ,
(2)

where parametersδon and δoff represent defect tolerances
that must be considered since variations in the weights due
to manufacturing defects and temperature changes can lead to
malfunction. Generally,δon andδoff take non-negative values.
In the examples and synthesis results of this paper, we assume
δon = 0 and δoff = 1. However, our methodology and tool
can take into account any user-specified values forδon and
δoff .

A Boolean logic function that can be realized by a single
LTG is called a threshold function[16]. An LTG can be
regarded as a generalization of conventional Boolean gates. An
l-input NAND and NOR gate can both be realized by a single
LTG. Because any Boolean logic function can be realized by
a collection of only NAND gates or only NOR gates, such
gates are called functionally complete. Hence, LTGs are also
functionally complete. However, obviously not all functions
can be realized by a single LTG. A network of threshold gates
is called athreshold network. In the sequel, we will refer to
LTGs as simply threshold gates.

B. Unateness

A Boolean logic function,f(x1, x2, . . . , xl), is said to be
positive (negative) in variablexi if there exists a disjunctive
or conjunctive expression off in which xi appears in uncom-
plemented (complemented) form only. Iff is either positive
or negative inxi, it is said to beunate in xi. Otherwise, it
is binate in xi [17]. Unateness is an important property of
threshold functions, because every threshold function is unate,
but not vice versa [17].
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C. Algebraically-Factored and Boolean-Factored Networks

A sum-of-products (SOP) expression,f =
m∑

i=1

Ci, is alge-

braic if no cube,Ci, is contained within another cube. That is,
∀i, j, i 6= j, Ci * Cj . An expression that is not algebraic is
Boolean[18]. A factored formF is said to be algebraically-
factored if the SOP expression obtained by multiplyingF out
directly, without using the identitiesxx̄ = 0 andxx = x, and
single-cube containment (SCC), is algebraic [18]. Otherwise,
F is Boolean-factored.

D. Linear Programming

In linear programming, we have ap× q matrix A, a p× 1
vectorB, and a1× q vectorC. We want to find a vectorX of
q elements such that the objective functionCX is minimized
subject to thep constraints given byAX ≤ B. Integer linear
programming (ILP) is a special case of linear programming
that requires all of the elements inX to assume integer values.

E. Previous Work

Research in threshold logic synthesis was done mostly
in the 1950s and 1960s. However, at that time it was not
easy to fabricate threshold gates and hence, the field failed
to gain momentum in the computer engineering community.
Nowadays, many competitive implementations of threshold
gates are available, and a lot of experimental results from
different applications have been published [8], [15]. Because
of the need for a smoother transition towards logic design
using nanotechnologies, we hope our work will reinvigorate
this field.

In [19], [20], a series of relationships between the weights
and the ON-set (set of cubes for which the function is 1)
and OFF-set (set of cubes for which the function is 0) of a
function was developed. Approximation methods were used
to determine the weights of the inputs and the threshold of
the function if the system of equations had a solution. In
[17], unateness was presented as a necessary condition for a
function to be threshold and admissible patterns on a Karnaugh
map were used to determine whether a function is threshold or
not. Unfortunately, because of their computational complexity,
these methods are restricted to 10 or fewer variables. Linear
programming and tabulation methods were used in [16] to
determine if a function is threshold or not. However, multi-
level threshold logic synthesis has not received much attention.
Some existing methods perform synthesis by representing each
product term in a sum-of-products (SOP) expression of a
function as a threshold gate or by converting each gate in
a Boolean network into a threshold gate (i.e., one-to-one
mapping). We will show that these methods lead to sub-
optimal networks.

CMOS implementations of threshold gates can be found
in [21]–[25]. A review of threshold logic can be found in
[26] and a survey of VLSI implementations of threshold
logic can be found in [15]. A multi-threshold logic circuit
design using RTDs is described in [27]. In [28], a covering
approach is used to synthesize two-level threshold networks.
A satisfiability-based lattice synthesis algorithm is discussed
in [29] for regular fabrics realized in QCAs.
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Fig. 3. An example to motivate the need for a threshold logic synthesis
methodology.

Another reason that multi-level threshold logic synthesis did
not receive much attention before is that efficient algorithms
to factorize a multi-level network were unknown at that time.
Today, various algorithms exist to compute the kernels and
co-kernels of a network which can then be used to perform
algebraic or Boolean factorization [18], [30]. In addition, many
methods have been developed for Boolean network simplifica-
tion aided by the use of internal and external satisfiability don’t
care (SDC) and observability don’t care (ODC) sets. Finally,
tools, such as SIS [31], exist that can factorize and optimize
a multi-level Boolean network.

III. M OTIVATIONAL EXAMPLE

We present a motivational example to demonstrate the need
for our threshold logic synthesis methodology in this section.
The need will become apparent when we compare the gate
count and the number of levels of the synthesized threshold
network against its Boolean counterpart.

Consider the Boolean network shown in Fig. 3(a). This
network contains seven CMOS gates and five levels (including
the inverter). If we simply replace each gate with a threshold
gate, the resulting threshold network will also contain seven
threshold gates and five levels. However, this threshold net-
work is sub-optimal because some nodes in Fig. 3(a) can be
collapsed into a single threshold node. Choosing which node
to collapse is critical. If we set the fanin restriction of a node
to four, f = n1∨n2 can be collapsed to getf = n3x5∨x6x7.

Now, we must determine iff is a threshold function or
not. One possible solution is to convert this problem into a
linear programming formulation to determine if an optimal
solution exists. In this case, it turns out thatf is not a
threshold function. Consequently, we must splitf into two
or more nodes. Efficient heuristics are required for splitting.
We choose to splitf as f = n3x5 ∨ n2 wheren2 = x6x7.
Next, we proceed to synthesizen3. After collapsing, n3
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can be expressed asn3 = x1x2x3 ∨ x̄1x4. This is not a
threshold function. Therefore, we splitn3 into two nodes to
getn3 = n4∨n5, wheren4 = x1x2x3 andn5 = x̄1x4. All of
these nodes are threshold functions. The synthesized threshold
network is shown in Fig. 3(b) and contains only five threshold
gates and three levels. Each threshold gate in this network has
the input weights shown on the left and the threshold shown
on the right.

The above example demonstrates that a threshold logic
synthesis methodology should try to address the following
issues.

• It must be able to collapse the Boolean function of a
node.

• It must determine if a Boolean function is threshold or
not.

• If the function is not threshold, there should be an
efficient way to split the function into smaller functions.

• Nodes that are shared in the original Boolean network
should also be shared in the synthesized threshold net-
work.

The way a non-threshold function is split is a key step in that
it determines the quality of the synthesized network.

IV. T HEOREMSFOR THRESHOLDLOGIC

We present two theorems that describe properties of thresh-
old logic in this section. We utilize them in our threshold logic
network synthesis methodology. Along with the proof of each
theorem, we demonstrate its application with an example.

Theorem 1:Given an expression for a unate Boolean func-
tion, f(x1, x2, . . . , xl), replace literalxi by literal x̄j , i, j ∈
{1, 2, . . . , l} and i 6= j, resulting in g(x1, x2, . . . , xk), k ∈
{1, 2, . . . , l} andk 6= i. If g is not a threshold function, then
f is not a threshold function.

Proof: We prove the contrapositive of the claim. That is,
if f is a threshold function, theng is a threshold function.
Assuming f is a threshold function with weight-threshold
vector 〈w1, w2, . . . , wl;T 〉, we have,

l∑
k=1

wkxk ≥ T + δon ⇒ f = 1, (3)

l∑
k=1

wkxk ≤ T − δoff ⇒ f = 0. (4)

Note that Equations (3) and (4) represent2l inequalities for all
value combinations of variablesx1, x2, . . . , xl. By replacing
xi with x̄j , we obtain the following2l−1 inequalities:

l∑
k=1,k 6=i

wkxk + wix̄j ≥ T + δon ⇒ g = 1, (5)

l∑
k=1,k 6=i

wkxk + wix̄j ≤ T − δoff ⇒ g = 0. (6)

Sincex̄j = 1− xj , we obtain,

l∑
k=1,k 6=i,j

wkxk + (wj − wi)xj ≥ (T − wi) + δon ⇒ g = 1,

(7)
l∑

k=1,k 6=i,j

wkxk + (wj − wi)xj ≤ (T − wi)− δoff ⇒ g = 0.

(8)

If assignments forwi and T exist such that the inequalities
in Equations (3) and (4) are satisfied, then the inequalities in
Equations (7) and (8) can also be satisfied with the weight-
threshold vector,〈w1, w2, . . . , wi−1, wi+1, . . . , wj−1, wj−wi,
wj+1, . . . , wl;T − wi〉. The variable sequence corresponding
to the weights is〈x1, x2, . . . , xi−1, xi+1, . . . , xj−1, xj , xj+1,
. . . , xl〉. Thus,g is also a threshold function. By proving the
contrapositive, the proof is concluded.

As an application of Theorem 1, considerf = x1x2∨x3x4.
To determine iff is threshold or not, we replacex3 by x̄1.
This results ing = x1x2 ∨ x̄1x4. Sinceg is binate inx1, it
is not a threshold function and, therefore,f is not a threshold
function.

The relationship of the weights and threshold between
functions containingxi in positive and negative phase is
given in [16]. That is, given a positive unate thresh-
old function, f(x1, x2, . . . , xl), with weight-threshold vec-
tor 〈w1, w2, . . . , wl;T 〉, if xi is replaced by x̄i to get
g(x1, x2, . . . , xi−1, x̄i, xi+1, . . . , xl), then the weight ofxi in
g is simply−wi. Furthermore, the threshold ofg is T − wi.
We negate the original weight of each variable that appears in
negative phase ing to get its new weight. To obtain the new
threshold, we subtract the sum of the negated weights from
the original threshold.

Theorem 2:If Boolean function f(x1, x2, . . . , xl) is a
threshold function, thenh(x1, x2, . . . , xl+k) = f(x1, x2, . . . ,
xl) ∨ xl+1 ∨ xl+2 ∨ . . . ∨ xl+k is also a threshold function.

Proof: A threshold function can always be represented
in positive unate form by substituting negative variables with
positive variables. For simplicity, we assume thatf is already
expressed in this form. There exists a weight-threshold vector,
〈w1, w2, . . . , wl;T 〉, for f since it is a threshold function.
If any of the xl+j , j ∈ {1, 2, . . . , k}, equals1, h equals1.
Otherwise,h is equal tof . If we set the weightwl+j of xl+j

to a value no less thanT +δon, for example,wl+j = T +δon,
then the output is1 when xl+j is 1. When xl+j and some
otherxi, i ∈ {1, 2, . . . , l}, equal1, the output is also1. This
is because we have represented the function in positive unate
form, thereby guaranteeing that all the weights and threshold
of f are positive [17]. When all ofxl+j equal0, h equalsf .
Thus, a weight-threshold vector forh always exists. Therefore,
h is a threshold function.

To illustrate Theorem 2, letf1(x1, x2, x3) = x1x2 ∨
x1x3. Becausef1 is a threshold function with weight-
threshold vector〈2, 1, 1; 3〉, h1(x1, x2, x3, x4, x5) = x1x2 ∨
x1x3 ∨ x4 ∨ x5 is also a threshold function with weight-
threshold vector〈2, 1, 1, 3, 3; 3〉. Taking another example, let
f2(x1, x2) = x1x̄2. First, we representf2 in positive unate
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Fig. 4. Flow diagram providing an overview of our threshold logic synthesis methodology.

form as g2(x1, y2) = x1y2, where y2 = x̄2. Since g2 is
a threshold function with weight-threshold vector〈1, 1; 2〉,
h2(x1, y2, x3) = g2(x1, y2) ∨ x3 = x1y2 ∨ x3 is also a
threshold function with weight-threshold vector〈1, 1, 2; 2〉.
Since y2 = 1 − x2, x1x̄2 ∨ x3 is also a threshold function
with weight-threshold vector〈1,−1, 2; 1〉.

V. M ETHODOLOGY AND IMPLEMENTATION

We discuss our multi-level threshold logic synthesis
methodology and its implementation details in this section.
The variables that are used in our flow diagram and algorithms
are defined as follows:

G A Boolean network.
|G| The number of nodes in networkG.
Gsoto The threshold sub-network obtained by one-to-one

mapping.
Gst The threshold sub-network obtained by our threshold

synthesis Method 1.
P Set of primary inputs in networkG.
S Set of fanout nodes in networkG.
n A node in networkG.
Fn Set of fanins of noden.
x(j) The (jth) fanin of a node.
r Fanin restriction on a threshold gate.
~v Array of nodes.
Kn Set of cubes of noden.
Cni The ith cube of noden.−→
W The weight-threshold vector,〈w1, w2, . . . , wl;T 〉.

A. Overview of the Method

Fig. 4 gives an overview of the main steps that com-
prise our methodology. The input to our methodology is
an algebraically-factored multi-output combinational Boolean
network,G, and its output is a functionally equivalent thresh-
old network,Gt. An algebraically-factored Boolean circuit is
used as an input because its nodes are more likely to be unate
and hence possibly threshold functions. The user can specify
the fanin restriction and defect tolerances for the threshold
gates in the network.

Two methods are used for synthesis as shown in Fig. 4. In
Method 1, the synthesis algorithm begins by processing each
primary output of Boolean networkG. First, the node repre-
senting a primary output is collapsed. If the node represents a
binate function, it is split into multiple nodes which are then
processed recursively. If the unate node is a threshold function,
it is saved in the threshold network and the fanins of the node
are processed recursively. Otherwise, the unate node is first
split into two nodes. If either of the split nodes is a threshold
function, Theorem 2 is used as a simplification step. If neither
of the split nodes is a threshold function, the original node is
split into multiple nodes which are then processed recursively.
The synthesis algorithm by Method 1 terminates when all the
nodes in networkG are mapped into threshold nodes.

In Method 2, one-to-one mapping is first performed on
network G. After that, starting from each primary output,
we obtain the subnetworks. These subnetworks consist of
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Require: noden, r > 0
if |Fn| > r then

~v ← split n by one-to-one mapping method
3: return~v // array of split nodes

n′ ← n
if not all fanins of noden are primary inputsthen

6: while |Fn′ | ≤ r do
for every faninx of noden′ do

// if neither primary input nor fanout node
9: if x /∈ P ∧ x /∈ S then

substitute the function ofx into n′

if |Fn′ | > r then
12: n′ ← undo the substitution ofx into n′

break
// if all fanins are primary inputs or fanout nodes

15: if ∀x in Fn′ , x ∈ (P ∪ S) then
break

returnn′ // collapsed node

Fig. 5. The node collapsing algorithm.
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n1
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f

Fig. 6. Example network to demonstrate node collapsing on outputf .

AND and OR gates only, and the number of primary inputs
still satisfy the fanin restriction. Threshold synthesis is then
performed on each subnetwork by Method 1. If the result-
ing threshold subnetwork has fewer threshold gates than the
subnetwork obtained by the one-to-one mapping method, we
choose this subnetwork. Otherwise, we choose the one-to-one
mapped subnetwork. The synthesis algorithm by Method 2
terminates when all the subnetworks have been processed.
Finally, we compare the two threshold networks obtained by
these two methods, and pick the smaller one as the final
threshold network. We describe each step in detail in the
following subsections.

B. Node Collapsing

The node collapsing algorithm is shown in Fig. 5. Given a
noden, if its number of fanins exceeds the fanin restriction,
we splitn by the one-to-one mapping method. Otherwise, we
keep collapsing it until one of the following conditions is met:

• All fanins of n are primary inputs and/or fanout nodes;
• The fanin ofn exceedsr.
To demonstrate node collapsing, consider the network with

output nodef in Fig. 6. Here,f = n′ = n1 ∨ n2, r is set
to 4, |Fn′ | = 2, Ff = {n1, n2}, P = {x1, x2, x3, x4}, and
S = {n3}. Since the inputs tof are not primary inputs and
|Fn′ | is less thanr, we first collapse onn1 to get f = n′ =
x1n3 ∨ n2. Now, |Fn′ | = 3 and Ff = {x1, n2, n3}. Since
|Fn′ | is still less thanr, we continue by collapsing onn2 to
get f = n′ = x1n3 ∨ n3x4. Now, we cannot collapsex1 and
x4 since they are primary inputs. Furthermore, observing that
n3 is a fanout node, we do not collapse it either. Thus, the
final result after collapsing isf = x1n3 ∨ n3x4.

As demonstrated in the example, node sharing is preserved
during node collapsing because the collapsing on one fanin

stops once this fanin is a fanout node. This implicitly helps to
maintain some of the original network structure and provides
guidance for better network decomposition. The benefit is
profound when the network contains many fanout nodes.

C. Formulating Synthesis as an ILP Problem

Once a node has been collapsed into a unate function,
it is necessary to determine whether it is threshold or not.
This can be done by formulating the problem as a linear
programming (LP) problem and then solving it. However, in
our implementation, we solve this problem by casting it in
an ILP formulation. This yields integer weights and threshold
which are easier to implement with RTD-HFETs (an LP
formulation would, in general, yield non-integer weights and
threshold). There are at most2l distinct cubes for a logic
function of l variables and this leads to2l inequalities which
represent the constraints (note thatl cannot exceed the fanin
restrictionr, and hence is not a large number). However, many
of these constraints are redundant. We have devised a simple
method to eliminate redundant constraints which makes the
ILP formulation smaller and possibly faster to solve (A similar
method based on extremal vectors can be found in [16]). The
algorithm for formulating the ILP problem and determining the
weight-threshold vector for a threshold function is shown in
Fig. 7. Even though in the worst case an ILP problem may take
exponential time to solve, in practice it is efficiently solved
because of small values ofl for each threshold gate in the
network.

The algorithm is best demonstrated by an example. Given
a unate function,f(x1, x2, . . . , xl), if it contains variables
in negative phase, we first transform these variables into
other variables in positive phase using variable substitution.
Considerf = x1x̄2 ∨ x1x̄3, wherex2 andx3 are in negative
phase. By replacinḡx2 with y2 and x̄3 with y3, we get the
positive unate functiong = x1y2∨x1y3. The ILP formulation
for g is as follows:

minimize : w1 + w2 + w3 + T (9)

subject to : w1 + w2 ≥ T + δon (10)

w1 + w3 ≥ T + δon (11)

w2 + w3 ≤ T − δoff (12)

w1 ≤ T − δoff (13)

wi ≥ 0, integer, i = 1, 2, 3. (14)

The objective function for this ILP problem is defined as
the summation of the weights and threshold. Sinceg has
been transformed into a positive unate form, only1 and don’t
care (−) will appear in its ON-set cubes. The ON-set cubes
of g are (1 1 −) and (1 − 1), where x1, y2, and y3 is
the variable sequence. To transform the ON-set cubes into
inequalities, theith 1 value corresponds to weightwi. We
need not consider don’t cares in the inequalities, because they
represent redundancies ing. For example, the ON-set cube
(1 1 −) corresponds to two inequalities, namely,w1 + w2 ≥
T + δon andw1 + w2 + w3 ≥ T + δon. The second inequality
is redundant because once the first inequality is satisfied, the
second inequality is automatically satisfied as well. Similarly,
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Require: positive unate noden
np ← n
nn ← invert n

3: for i = 1 to |Fn| do // objective function
print “wi+”

print “T ”
6: for i = 1 to |Knp | do // ON-set inequalities

for j = 1 to |Fp| do
if xj ∈ Cnpi

then
9: print “wj+”

print “−δon ≥ T ”
for i = 1 to |Knn | do // OFF-set inequalities

12: for j = 1 in |Fn| do
if xj /∈ Cnni

then
print “wj+”

15: print “δoff ≤ T ”−→
W ← solve ILP problem
if
−→
W 6= ∅ then

18: for j = 1 in |Fn| do
if xj in negative phase inn then

// subtract weight from original threshold
21: W [T ]←W [T ]−W [wj ]

W [wj ]← −W [wj ] // negate the weight
return

−→
W // weight-threshold vector

24: else
return∅ // no solution exists

Fig. 7. The ILP formulation algorithm.

w1 + w3 ≥ T + δon represents the constraint imposed by the
cube(1 − 1).

To compute the OFF-set cubes ofg, we simply invertg
to get ḡ. The ON-set cubes of̄g correspond to the OFF-set
cubes ofg. Becausēg is always in negative unate form, only0
and− appear in its ON-set cubes. Continuing with the earlier
example, we invertg to get ḡ = x̄1∨ ȳ2ȳ3 after simplification.
The ON-set cubes for̄g are(0 − −) and(− 0 0). For the OFF-
set inequalities, theith don’t care corresponds to weightwi.
Therefore, the ON-set inequalities forḡ arew2+w3 ≤ T−δoff

and w1 ≤ T − δoff . Thus, the OFF-set inequalities forg
are w2 + w3 ≤ T − δoff and w1 ≤ T − δoff , as given in
Equations (12) and (13).

By requiring the variables to be integer-valued (i.e., con-
straint (14)), this ILP problem has an optimal solution. The
weight-threshold vector forg is 〈2, 1, 1; 3〉. Using the rela-
tionship mentioned in Section IV, the final weight-threshold
vector forf is 〈2,−1,−1; 1〉.

D. Unate Node Splitting and Combining

If the ILP problem for noden does not have a solution,
the node must be split into multiple nodes to increase the
likelihood of the split nodes being threshold functions. Fig. 8
outlines the splitting process of a unate node. How a unate
node is split is contingent upon one of the following condi-
tions:

1) All of the variables appear exactly once.
2) Some of the variables appear in all the cubes.
3) The most frequent variable(s) does not appear in all the

cubes.
4) A tie between the most frequent variables is broken

randomly.

If all the variables appear only once, we simply split the node
into two, with each node containing roughly equal number of

Require: unate noden, r > 0
if all variables appear oncethen // condition1

n = n1 ∨ n2 s.t. |Kn1 | = |Kn2 |
3: else if ∀c, c ∈ Kn, variablexi ∈ c then // conditions2 and4

n1 ← xi // assuming correct phase
n2 ← factor n w.r.t. n1

6: else// condition3
xi ← most frequently appearing variable
n1 ←

∑
c, xi ∈ c ∧ c ∈ Kn

9: n2 ←
∑

c1, c1 /∈ n1 ∧ c1 ∈ Kn

if n1 is a threshold functionthen // assuming|Kn1 | ≥ |Kn2 |
combine nodes according to Theorem 2

12: ~v ← n1 ∨ n2

else if n2 is a threshold functionthen
combine nodes according to Theorem 2

15: ~v ← n1 ∨ n2

else
k ← (|Kn| ≤ r) ? |Kn| : r // pick the smaller one

18: ~v ←
k∑

i=1

ni // split n into k smaller nodes

return~v // array of split nodes

Fig. 8. The unate node splitting algorithm.

cubes. When a variable appears in all the cubes, we split the
node into two by factoring this variable out of the node. If the
above two conditions are not met, we split the node using the
most frequently appearing variable. For example, givenn =
x1x2 ∨ x1x3 ∨ x4x5, we split onx1 to getn1 = x1x2 ∨ x1x3

andn2 = x4x5, with n = n1∨n2. This last condition reduces
the likelihood of a function being non-threshold because there
are fewer candidate variables to choose from in the split nodes
to prevent the condition in Theorem 1 from being satisfied.

Once a node has been split, we choose the larger node (i.e.,
the one with more cubes) and check that node to see if it is
a threshold function. If it is, we apply Theorem 2. Looking
at the last example, sincen1 = x1x2 ∨ x1x3 is a threshold
function with weight-threshold vector〈2, 1, 1; 3〉, functionn =
x1x2∨x1x3∨n2 is also a threshold function with the weight-
threshold vector〈2, 1, 1, 3; 3〉. Now, n2 is processed by further
collapsing, threshold checking, or splitting. If neither of the
split nodes is a threshold function, the original node is split
into k smaller nodes, wherek is the smaller ofr and |Kn|.
After splitting, n = n1 ∨ n2 ∨ · · · ∨ nk, which is a threshold
function with weight-threshold vector〈1, 1, . . . , 1; 1〉. The split
nodes,ni, i ∈ {1, 2, . . . , k}, are then processed recursively.

E. Binate Node Splitting

If a noden is binate, we split it into at mostk nodes where
k is the smaller ofr and|Kn|. The splitting stops when a unate
node is generated. The algorithm for binate node splitting is
shown in Fig. 9. We first split the binate node on the most
frequently appearing binate variable. If the split nodes are
binate, we repeat the process. Otherwise, we stop splitting.

To demonstrate binate splitting, considern = x̄1x4∨x2x3∨
x̄2x4x5, wherer is five and|Kn| is three. This node will be
split into at most three nodes. First it is split on the binate
variable,x2, to getn1 = x̄1x4 ∨ x2x3 andn2 = x̄2x4x5. Be-
causen1 andn2 are unate nodes, we stop splitting. Thus,n is
represented asn = n1∨n2, which is a threshold function with
weight-threshold vector〈1, 1; 1〉. Threshold network synthesis
proceeds recursively by processing each of the split nodes.
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Require: binate noden, r > 0
k ← (|Kn| ≤ r) ? Kn : r // pick the smaller one
~v ← n // split on binate variables when needed

3: while |~v| 6= k ∧ ∃p ∈ ~v, s.t. p has binate variablexi do
n1 ← p(xi, . . . )
n2 ← p(x̄i, . . . ) // assign the resulting split nodes to vector

6: ~v ← {~v − p} ∨ {n1, n2}
if ∃p ∈ ~v, s.t. p is a unate nodethen

break
9: return~v // array of split nodes

Fig. 9. The binate node splitting algorithm.

sis>thprint

{f} = 1; [217] = 1; [218]=1;
{f} = [217] + [218];

[217] = 2; a = 1; b = 1;
[217] = a b;

[218] = 1; c = 1; d = -1;
[218] = c d;

sis>

thprint thprint_stats thsim

sis>thprint_stats

# of PI:           4
# of PO:         1
# of levels:     3
# of nodes:    3
area:              9
network name: exam

sis>

sis>thsim 0 0 1 1

Output: 1
Next state:

sis>thsim 1 0 1 0

Output: 0
Next state:

sis>

Threshold Networks

Threshold Logic
Synthesis

One-to-one
Mapping

thsyn thconv

Algebraically-Factored
Boolean Networks

f

d

a
b
c

Fig. 10. The framework of the threshold logic synthesis tool: TELS.

F. Complexity Analysis

In this subsection, we perform the complexity analysis of the
algorithms in our threshold network synthesis methodology.
The complexity of the node collapsing algorithm isO(1),
because the total number of operations performed by the
algorithm is proportional to the fanin restriction, which is
constant. The complexity of both the unate and binate node
splitting algorithms isO(|Fn| · |Kn|). Even though ILP is NP-
complete, the ILP instances being solved are small because
the number of inputs of the threshold gate being synthesized
cannot exceed the fanin restriction. Even then, if the ILP
solver cannot find the solution in a reasonable amount of
time, it declares the problem as infeasible. If that happens,
the splitting algorithms in our methodology create smaller
problems for the ILP solver to solve. In this way, the threshold
logic synthesis problem can be solved efficiently in practice
with our methodology.

G. Implementation

We implemented the proposed methodology in a tool called
ThrEshold Logic Synthesizer (TELS) which has been inte-
grated within SIS. This is the first multi-output multi-level
threshold network synthesis tool to the best of our knowledge.
The package currently consists of approximately4, 000 lines
of C code. The framework of TELS is shown in Fig. 10.
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Fig. 11. Four-phase clocking for MOBILE circuits.

H. Technology Mapping

Once a threshold network has been synthesized by TELS, it
can be mapped onto a target nanoscale device that is capable of
implementing threshold logic. In this work, MOBILEs, which
were introduced in Section I, are the target device.

A MOBILE is a self-latching RTD-HFET threshold gate,
because its output is valid only when the clock is high. The
MOBILE clock has four phases as shown in Fig. 11. During
the evaluation phase, the output of a gate is computed. In
the hold (i.e., self-latching) phase, the result is valid. In the
reset phase, the load capacitance is discharged and the gate
returns to the monostable mode of operation. Finally, in the
wait phase, the inputs of the gate are loaded with the results
obtained from the predecessor gate.

In order to make the MOBILE-based threshold network
function correctly under four-phase clocking, we have to make
sure that all the input signals of any embedded threshold gate
arrive in the same clock phase. We have implemented this by
inserting threshold buffers, wherever needed, in the network.
Suppose all primary input signals arrive in the same clock
phase. We examine the structure of the threshold network from
the primary inputs to primary outputs. If a node fans out to
several nodes and those fanout nodes are not at the same level
of the network, we insert buffers to make sure that all the input
signals of a node arrive in the same clock phase. An example
is given in Fig. 12. The network in Fig. 12(a) implements a
full adder, with logic functionss = c̄oa ∨ c̄ob ∨ c̄oci ∨ abci

and co = ab ∨ aci ∨ bci. We observe that inputsa, b, ci and
co of nodes do not arrive in the same clock phase. After we
insert three buffers into the network, as shown in Fig. 12(b), all
input signals of each node in this network arrive in the same
clock phase, thus making the network function correctly. A
MOBILE implementation of a threshold buffer and its symbol
are shown in Fig. 12(c).

VI. EXPERIMENTAL RESULTS

We present our experimental results in this section. The
experiments were conducted on a 2.4 GHz Dell PowerEdge
Pentium IV machine with 768MB RAM running Redhat Linux
8.0. We ran examples belonging to the MCNC benchmark suite
through TELS. All the synthesized networks were simulated
for functional correctness to validate our methodology.
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(c) A MOBILE implementation of a threshold buffer and its
symbol.

Fig. 12. Example of threshold network technology mapping.

A. Threshold Gate Count and Interconnect

Table I lists the results obtained by TELS for the 56
benchmarks, with the fanin restriction of a gate set to six.
In this table, one-to-one mapping refers to converting each
primitive gate in the algebraically-factored network into a
threshold gate (the inverters, if any, are absorbed into the
corresponding threshold gate by changing the weight and
threshold, as was pointed out before). The threshold network
synthesis results were obtained by TELS. The number of
interconnects in the network was calculated by summing
up the number of fanins of all the threshold gates in the
network. %R1 and %R2 represent the gate count reduction
and interconnect count reduction in the threshold network
obtained by TELS compared to the threshold network obtained
by one-to-one mapping, respectively.

TELS takes less than one second to synthesize most of
the benchmarks. A few large benchmarks need about three to
four minutes for synthesis. Comparing the results, we can see
that up to80.0% gate count reduction and70.6% interconnect
count reduction is possible, with the average being22.7% and
12.6%, respectively.

Fig. 13. Fanin-trend graph for thepair benchmark.

B. Trend of Threshold Gate Count with Change of Fanin
Restriction

Fig. 13 demonstrates the trend in the total number of thresh-
old gates required for thepair benchmark as the maximum
fanin restriction is relaxed from three to ten. The gate count
reduction for the one-to-one mapping case is larger than the
gate count reduction for threshold synthesis case as the fanin
restriction is relaxed from six to ten. This is because with a
larger allowed fanin, it is possible to obtain a Boolean network
with fewer gates, in general. However, there is no significant
reduction in the number of threshold gates for TELS. This
is understandable because as the allowed fanin increases, the
likelihood of a function being threshold decreases. As reported
in [16], all positive unate functions of three or fewer variables
are threshold functions. However, 17 out of 20 and only 92
out of 168 positive unate functions of four and five variables,
respectively, are threshold functions, not considering variable
permutations. Thus, we can see that with increasing allowed
fanin, the percentage of functions that are threshold decreases
drastically.

C. Distribution of Weights and Thresholds

We performed experiments to see how the values of the
weights and thresholds of the threshold gates in the networks
synthesized by TELS are distributed. If there exist some
weights or thresholds whose absolute values are much larger
than others, the threshold network will not be well-balanced.
We would like to avoid this phenomenon, because it may
result in manufacturing problems. Fig. 14 shows that all
the weights and threshold of thedalu benchmark assume
reasonably small integer values. Another fact worth noticing
is that more weights and threshold take positive values than
negative values. This is because there are more positive unate
variables than negative unate variables in the synthesized
threshold network.

D. Parametric Variations in Weights

We also performed experiments to gauge the impact of
parametric variations in the input weights on circuit func-
tionality. We varied δon from zero to two while keeping
δoff fixed at one. The disturbed valuew′ was computed as
w′ = w+v×U(−0.5, 0.5), wherew is the original value,v is
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TABLE I

THRESHOLDNETWORK SYNTHESIS RESULTS FORFANIN RESTRICTION OFSIX

One-to-one mapping Threshold network synthesis
Benchmark Inputs Outputs Gates Levels Interconnect Gates Levels Interconnect %R1 %R2

b1 3 4 10 4 18 8 3 16 20.0 11.1
cm42a 4 10 13 3 34 13 3 34 0 0
decod 5 16 24 3 52 24 3 52 0 0
cm82a 5 3 18 5 50 12 4 38 33.3 24.0
majority 5 1 5 3 17 1 2 5 80.0 70.6
parity 16 1 45 9 90 45 9 90 0 0
z4ml 7 4 39 8 110 19 5 64 51.3 41.8
f51m 8 8 101 8 296 82 8 266 18.8 10.1
9symml 9 1 141 10 446 110 9 412 22.0 7.6
alu2 10 6 253 27 795 197 25 715 22.1 10.1
x2 10 7 20 5 73 15 4 67 25.0 8.2
cm152a 11 1 13 4 44 11 4 42 15.4 4.6
cm85a 11 3 26 5 108 14 5 72 46.2 33.3
cm151a 12 2 14 6 47 12 5 45 14.3 4.3
alu4 14 8 517 28 1559 410 23 1407 20.7 9.8
cm162a 14 5 39 7 109 26 8 88 33.3 19.3
cu 14 11 31 6 87 24 4 76 22.6 12.7
cm163a 16 5 40 6 107 25 6 84 37.5 21.5
cmb 16 4 33 7 81 27 6 71 18.2 12.4
pm1 16 13 25 4 80 23 4 76 8.0 5.0
tcon 17 16 32 3 56 32 3 56 0 0
pcle 19 9 42 6 122 35 6 109 16.7 10.7
sct 19 15 54 6 140 38 5 115 29.6 17.9
cc 21 20 49 6 122 35 6 91 28.6 25.4
cm150a 21 1 25 5 81 21 4 77 16.0 4.9
cordic 23 2 61 9 171 49 7 155 19.7 9.4
ttt2 24 21 127 7 376 100 6 327 21.3 13.0
i1 25 16 27 5 68 23 5 63 14.8 7.4
lal 26 19 67 7 186 54 7 168 19.4 9.7
pcler8 27 17 50 7 146 47 7 143 6.0 2.1
frg1 28 3 97 12 293 59 9 233 39.2 20.5
c8 28 18 109 8 281 85 7 228 22.0 18.9
comp 32 3 89 9 315 83 8 311 6.7 1.3
my adder 33 17 160 34 416 96 18 304 40.0 26.9
term1 34 10 278 11 761 226 10 683 18.7 10.3
count 35 16 91 12 261 79 12 241 13.2 7.7
unreg 36 16 66 4 150 50 5 134 24.2 10.7
cht 47 36 119 5 240 82 5 202 31.1 15.8
apex7 49 37 171 10 442 118 9 364 31.0 17.7
x1 51 35 293 8 866 203 7 731 30.7 15.6
dalu 75 16 1159 24 3265 810 23 2579 30.1 21.0
example2 85 66 226 9 551 182 8 489 19.5 11.3
i9 88 63 341 9 890 275 8 817 19.4 8.2
x4 94 71 264 7 696 189 8 562 28.4 19.3
i3 132 6 170 6 484 158 6 464 7.1 4.1
i5 133 66 132 19 264 66 6 260 50.0 1.5
i8 133 81 681 11 1915 570 10 1790 16.3 6.5
apex6 135 99 543 12 1348 396 12 1169 27.1 13.3
x3 135 99 660 9 1878 441 7 1514 33.2 19.4
i6 138 67 277 5 659 276 5 658 0.4 0.2
pair 173 137 1199 14 3438 907 12 2966 24.4 13.7
i4 192 6 98 6 360 74 5 336 24.5 6.7
i7 199 67 340 5 849 304 5 813 10.6 4.2
i2 201 1 244 7 766 198 7 694 18.9 9.4
des 256 245 2443 15 5743 1920 16 5180 21.4 9.8
i10 257 224 2282 39 6202 1817 35 5893 20.4 5.0

the variation multiplier andU(−0.5, 0.5) is a random variable
uniformly distributed between−0.5 and0.5. A circuit fails if
there exists any input vector for which the network synthesized
by TELS generates a wrong output value under the disturbed
weights during simulation. The failure fraction is defined as
the percentage of benchmarks that failed to pass simulation.
The results shown in Fig. 15 demonstrate that asδon increases,
the failure rate decreases. This is because the network is more
robust.

VII. C ONCLUSIONS

In this paper, we introduced the first comprehensive thresh-
old network synthesis methodology for multi-output multi-
level threshold networks starting from Boolean descriptions.
The algorithm in our methodology is recursive in nature and is
based upon efficient heuristics that partition a logic function, if
it is determined to be non-threshold, using an ILP formulation.
Any fanout that occurs in the initial network is preserved in the
threshold network. We have implemented the methodology on
top of an existing logic synthesis tool, and validated it with
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Fig. 14. Weights and threshold distribution graph for thedalu benchmark
with fanin restriction of four. Both weights and threshold take integer values.

Fig. 15. The failure rate due to variations in the input weights.

a large number of benchmarks. Experimental results for the
benchmarks show that the quality of the generated networks,
in terms of total gate count, number of levels, and interconnect
count is quite good.

Because this is the first tool for threshold network synthesis,
there is room for improvement. For example, our method
performs a backward traversal of the network from the outputs
to the inputs. This makes the synthesized network somewhat
dependent on the original network structure. Perhaps other
approaches, such as divide-and-conquer, could also be used
in threshold network synthesis. There may also exist better
partitioning heuristics that might generate better results. Fur-
thermore, perhaps different heuristics are required depending
upon the optimization criteria. We hope that others will join in
our efforts to improve this work. We also hope that integrating
our methodology in commercial design automation tools will
help pave the way for a smoother transition towards logic
design using nanotechnologies.
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