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Abstract—We propose an algorithm for efficient threshold designed, synthesized, and tested in a reasonable time. The
network synthesis of arbitrary multi-output Boolean functions.  current CMOS dominance can partially be attributed to such
Many nanotechnologies, such as resonant tunneling diodes yoyelopments. Today, nanotechnologies are in their infancy

(RTDs), quantum cellular automata (QCA), and single electron . - .
tunneling (SET), are capable of implementing threshold logic and the development of design automation methodologies for

efficiently. The main purpose of this work is to bridge the current  them is crucial if any of them is to be widely used. Among
wide gap between research on nanoscale devices and researclthe various existing nanoscale devices [2]-[7], RTDs [4]-

on synthesis methodologies for generating optimized networks [6], QCA, and SET [7] are three promising nanotechnologies

utilizing these devices. h re of particular inter hev implemen
While functionally-correct threshold gates and circuits based ;h?ets?lcidogapt:; gl;fiiient:;} est to us because they implement

on nanotechnologies have been successfully demonstrated, ther . )
exists no methodology or design automation tool for general A threshold gate can be realized using RTDs and het-
multi-level threshold network synthesis. We have built the first erostructure field-effect transistors (HFETS), as shown by the
such tool, ThrEshold Logic Synthesizer (TELS), on top of an circuit in Fig. 1(a). This circuit is called a monostable-bistable
existing Boolean logic synthesis tool. Experiments with 56 multi- transition logic element (MOBILE) [8], [9]. A MOBILE is
output benchmarks indicate that, compared to traditional logic . . ) ) .
synthesis, upto 80.0% and 70.6% reduction in gate count and & SING edge-triggered, currentfcontrolled gate. It consists of
interconnect count, respectively, is possible with the average being Serially-connected load and driver RTDs. The RTD-HFETs
22.7% and 12.6%, respectively. Furthermore, the synthesized connected in parallel to the load and driver RTDs perform
networks are well-balanced structurally. The novelty of this g positive and negative weighting of the inputs, respectively.
work lies in the introduction of the first comprehensive synthesis The output is logicl if the sum of the weighted inputs is
methodology and tool for general multi-level threshold logic - L .
design. greater than or equal to a threshold. Otherwise, it is ldgic
A QCA cell contains four quantum dots and two mobile

' electrons. Due to Coulombic interactions, the electron pair

assumes one of the two configurations shown in Fig. 1(b).

These configurations may be interpreted as digital states. A
. INTRODUCTION majority gate, also shown in Fig. 1(b), is a primitive gate in

HE Semiconductor Industries Association (SIA) roadmagCA that implements the functiahl (A, B, C) = ABVBCV

[1] predicts that complementary metal-oxide semicorflC- Majority gates are just a special case of threshold gates.
ductor (CMOS) chips will continue to fuel the need for Circuits containing threshold gates have been demonstrated.
high-performance systems for anothé-15 years. However, The use of. SET_ technology to implement such circuits has
advancements in electronic materials and devices have credtgn described in [10], [11]. RTD-based threshold gates have
nanoscale devices (RTDs, QCA, SETs, to name a few) tffen widely studied in [5], [8], [12]-{14]. However, the
have novel structures and properties. Such devices offer finmercial application of threshold logic is very limited. The
opportunity to further improve the compactness and speedBfin reason is that the approach taken to design §uch circuits is
very large scale integrated (VLSI) systems. While it is easy gyfull-custom methodology. Furthermore, there exists no multi-

implement Boolean gates using CMOS, it is easier for ma;ﬁ,vel threshold network synthesis tool. As mentioned in [15],
nanoscale devices to implement threshold gates. the usefulness of threshold gates will be determined not only

As progress is made in the material and physical uRY its availab_ility,_cost, and capabilities _of its basic building
derstanding of nanoscale devices, research must be dBIREKS, but significantly more by the existence of automatic
at the logic level to fully harness the potential offered byYNthesis tools that could take advantage of them.
these devices. When CMOS was still in its infancy in the N this paper, we present the first comprehensive methodol-
1980s, researchers began to develop computer-aided deS8% for multi-level threshold logic synthesis and optimization

methodologies for it so that CMOS VLSI systems could b&om @ Boolean logic description. Fig. 2 shows the CMOS
and threshold logic design flows. Once a threshold network
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(&) A monostable-bistable logic element (MOBILE). parameters are a threshdltdand weightsw;, i € {1,2,... I},

where weightw; is associated with a particular input variable
A 0 Devcecu Binary0  Binary 1 x;. The input-output relation of an LTG is based on the fact
Output cell 1
o / Vs that outputf assumes the value 1 when the weighted sum of
1 . the inputs equals or exceeds the value of the thresHgldnd
o > MABO) assumes the value 0 otherwise [16]. That is,
p—

Iputc — >

1
0 if Zé:l wix; < T. ( )

flzy,xo, ... @) = {
(b) A three-input QCA majority gate.
The weights and threshold of the LTG can be represented by
the weight-threshold vectdiv;, ws, . .., w;; T). If we want to
increase the robustness of the LTG, we can incorporate defect
improves the robustness of the synthesized network. Whitgerances into the definition as follows:

Fig. 1. Example of two nanotechnologies that implement threshold gate:

synthesizing, node sharingg,, fanout node) is also preserved i 5
and thus, any advantage that is gained by preprocessing the,, 4, ... ) = L Y iy wiwi 2 T+ Gon )
network through a Boolean logic synthesis tool remains. The 0 if Zﬁzl wiz; <T — o575,

synthesized network is optimized in terms of gate count. The
novel contributions of this work are as follows: where parameters,,, and d,s; represent defect tolerances

« This is the firstcomprehensivenethodology for multi- that must be considered since variations in the weights due
level multi-output threshold network synthesis to manufacturing defects and temperature changes can lead to

. Based on our methodology, we have built a threshomalfunction. Generallyj,,, andd, ;s take non-negative values.

network synthesis tool on top of an existing Boolean Iogi@ the examples and synthesis results of this paper, we assume
synthesis tool don = 0 andd,sr = 1. However, our methodology and tool

« We formulate new theorems that describe properties §f" take into account any user-specified valuessfar and

threshold logic and use them to our advantage in ofitff- . ) ) .
methodology. A Boolean logic function that can be realized by a single

The remainder of this paper is organized as follows. In SeICTG is called athres_hol(_i function[16]_. An LTG can be

tion Il, we present background material and discuss previo arded as a generalization of conventional Boolean gat?s- An

work in threshold logic synthesis. In Section Ill, we preserﬁInput NAND and NOR gate can both pe realized by a single
G. Because any Boolean logic function can be realized by

an example to motivate the need for a threshold netwo lecti t onlv NAND gat v NOR qat h
synthesis methodology. In Section IV, we propose and pro@eCo ection ot only gates or only gates, suc

several theorems on the properties of threshold logic. We th?z?}tets_ are”called flur:cnoHnaIIy complbet_e ' Hlenceé L-II;('?S art_e also
describe our synthesis methodology and its implementation pictionally compiete. HOWever, obviously not all functions

detail in Section V. We also discuss technology mapping based’ be realized by a single LTG. A network of thrgshold gates
on MOBILEs in this section. In Section VI, we present ou called athreshold networkIn the sequel, we will refer to

experimental results and conclude in Section VII. LTGs as simply threshold gates.

Il. BACKGROUND AND PREVIOUS WORK B. Unateness

In this section, we describe some preliminary concepts toA Boolean logic function,f(zy,zs,...,7;), is said to be
help the reader understand our proposed methodology begesitive (negative) in variable; if there exists a disjunctive
in later sections. Previous work in threshold logic synthesis 8 conjunctive expression gf in which z; appears in uncom-
also presented in this section. plemented (complemented) form only. ffis either positive
A. Threshold Logic or negative inz;, it is said to beunatein xz;. Otherwise, it

A linear threshold gate(LTG) has ! two-valued inputs, IS binate in z; .[17]. Unateness is an important propgrty of
z; € {0,1}, and a single two-valued output Its internal threshold_ functions, because every threshold function is unate,

but not vice versa [17].
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C. Algebraically-Factored and Boolean-Factored Networks
m
A sum-of-products (SOP) expressiof= > C;, is alge-

braic if no cube,C;, is contained within anotTh_elr cube. That is,
Vi, j, i # 4, C; € C;. An expression that is not algebraic is
Boolean[18]. A factored formF is said to be algebraically-
factored if the SOP expression obtained by multiplyfigput
directly, without using the identitiesz = 0 andzz = z, and
single-cube containment (SCC), is algebraic [18]. Otherwise, .
F' is Boolean-factored.

D. Linear Programming

In linear programming, we havej@ax ¢ matrix A, ap x 1
vectorB, and al x ¢ vectorC. We want to find a vectoX of
g elements such that the objective functi@iX is minimized
subject to thep constraints given by AX < B. Integer linear

programming (ILP) is a special case of Iinegr programming (b) The equivalent synthesized threshold net-
that requires all of the elementsihto assume integer values. work.

E. Previous Work Fig. 3. An example to motivate the need for a threshold logic synthesis

Research in threshold logic synthesis was done mostiyinedology
in the 1950s and 1960s. However, at that time it was not

casy .to fabricate th_reshold gates and h_ence., the field fa.'lqunother reason that multi-level threshold logic synthesis did
to gain momentum in the computer engineering commumtr(

L i d‘ot receive much attention before is that efficient algorithms
Nowadays, many competitive implementations of thresho . . .
0 factorize a multi-level network were unknown at that time.

gates are available, and a lot of experimental results fr oday, various algorithms exist to compute the kernels and

different applications have been published [8], [15]. Becav%%-kernels of a network which can then be used to perform

of the need for a smoother transition towards logic des'%ﬁgebraic or Boolean factorization [18], [30]. In addition, many

;Jhsi;n%erlljmotechnologms, we hope our work will remwgoratr%ethods have been developed for Boolean network simplifica-

ion aided by the use of internal and external satisfiability don’t

In [19], [20], a series of relationships between the WelghESare (SDC) and observability don’t care (ODC) sets. Finally,

and the ON-set (set of cubes for_ which the f_uncpon IS ][%ols, such as SIS [31], exist that can factorize and optimize
and OFF-set (set of cubes for which the function is 0) of 2 multi-level Boolean network

function was developed. Approximation methods were used
to determine the weights of the inputs and the threshold of
the function if the system of equations had a solution. In
[17], unateness was presented as a necessary condition for \&/e present a motivational example to demonstrate the need
function to be threshold and admissible patterns on a Karnaugh our threshold logic synthesis methodology in this section.
map were used to determine whether a function is thresholdTdre need will become apparent when we compare the gate
not. Unfortunately, because of their computational complexitgpunt and the number of levels of the synthesized threshold
these methods are restricted to 10 or fewer variables. Linewtwork against its Boolean counterpart.
programming and tabulation methods were used in [16] toConsider the Boolean network shown in Fig. 3(a). This
determine if a function is threshold or not. However, multinetwork contains seven CMOS gates and five levels (including
level threshold logic synthesis has not received much attentidine inverter). If we simply replace each gate with a threshold
Some existing methods perform synthesis by representing egelte, the resulting threshold network will also contain seven
product term in a sum-of-products (SOP) expression oftlareshold gates and five levels. However, this threshold net-
function as a threshold gate or by converting each gate work is sub-optimal because some nodes in Fig. 3(a) can be
a Boolean network into a threshold gatee( one-to-one collapsed into a single threshold node. Choosing which node
mapping). We will show that these methods lead to subb collapse is critical. If we set the fanin restriction of a node
optimal networks. to four, f = n1 Vny can be collapsed to g¢t= nsxs5 Vv xgxy.
CMOS implementations of threshold gates can be foundNow, we must determine iff is a threshold function or
in [21]-[25]. A review of threshold logic can be found innot. One possible solution is to convert this problem into a
[26] and a survey of VLSI implementations of thresholdinear programming formulation to determine if an optimal
logic can be found in [15]. A multi-threshold logic circuitsolution exists. In this case, it turns out thétis not a
design using RTDs is described in [27]. In [28], a coverinthreshold function. Consequently, we must sglitinto two
approach is used to synthesize two-level threshold networks.more nodes. Efficient heuristics are required for splitting.
A satisfiability-based lattice synthesis algorithm is discuss&We choose to splitf as f = nszxs V ny wherens = xgxy.
in [29] for regular fabrics realized in QCAs. Next, we proceed to synthesize;. After collapsing, ns

IIl. M OTIVATIONAL EXAMPLE
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can be expressed as; = xi2223 V Tiz4. This is not a Sincez; = 1 — z;, we obtain,

threshold function. Therefore, we splig into two nodes to

getn3:n4\/n5,wherEn4:x1x2x3 andns = z1x4. All of wizr + (Wi —w;)zs > (T —w;) + 6., = g=1
these nodes are threshold functions. The synthesized threshold=~, k(w5 = wi)z; 2 ( i)+ =g =1,
network is shown in Fig. 3(b) and contains only five threshold ="~ )
gates and three levels. Each threshold gate in this network has ,

the input weights shown on the left and the threshold shown _
on thepright. 9 Z wxy + (w; —wi)z; < (T —w;) — dofp = g =0.

k=1,k%i,j
The above example demonstrates that a threshold logic (8)
synthesis methodology should try to address the following
issues. If assignments forw; and T' exist such that the inequalities

) in Equations (3) and (4) are satisfied, then the inequalities in

« It must be able to collapse the Boolean function of g ations (7) and (8) can also be satisfied with the weight-
node. i . i . threshold Ve(:t(’.)r(wl7 W2y« vv s Wi—1, Wity ..y Wij—1, W5 —Ws,

« It must determine if a Boolean function is threshold O{UjH’ ...,w;;T — w;). The variable sequence corresponding
not. to the Weights iS(J?l, T2y ey Ti—1y Tigly vy Lj—1,Tj, Tj41,

« If the function is not threshold, there should be an .\ Thys 4 is also a threshold function. By proving the
efficient way to split the function into smaller funCt'onscontrapositive the proof is concluded. -

+ Nodes that are shared in the original Boolean network oq 4p application of Theorem 1, consider= 2,2V x4
should also be shared in the synthesized threshold nef yetermine iff is threshold or not, we replace; by ;.

work. This results ing = 2122 V Z124. Sinceg is binate inzy, it
The way a non-threshold function is split is a key step in thg not a threshold function and, thereforfeis not a threshold
it determines the quality of the synthesized network. function.

The relationship of the weights and threshold between
functions containingz; in positive and negative phase is
IV. THEOREMSFOR THRESHOLDLOGIC given in [16]. That is, given a positive unate thresh-
old function, f(x1,xs,...,x;), with weight-threshold vec-
We present two theorems that describe properties of thre$pr (w1, ws, ..., w;T), if x; is replaced byz; to get
old logic in this section. We utilize them in our threshold logi@ (21, 2, - . ., Ti—1, i, Tiy1, - - -, 1), then the weight ofy; in
network synthesis methodology. Along with the proof of each is simply —w;. Furthermore, the threshold gfis 7" — w;.
theorem, we demonstrate its application with an example. We negate the original weight of each variable that appears in
Theorem 1:Given an expression for a unate Boolean fundi€gative phase ip to get its new weight. To obtain the new

tion, f(x1,xa,...,x;), replace literalz; by literal z;, i, € threshold, we subtract the sum of the negated weights from
{1,2,...,1} andi # j, resulting ing(z1,s,...,2;), k € the original threshold. _ .
{1,2,...,1} andk # i. If g is not a threshold function, then Theorem 2:If Boolean function f(z1,2,...,z1) is a

f is not a threshold function. threshold function, theh(z1, 2o, ..., z14x) = f(z1, 22, .. .,

Va1 Vae V... Vo, is also a threshold function.
Proof: A threshold function can always be represented

din positive unate form by substituting negative variables with
positive variables. For simplicity, we assume tlfas already

Proof: We prove the contrapositive of the claim. That is,xl)
if f is a threshold function, thep is a threshold function.
Assuming f is a threshold function with weight-threshol

vector (wy, wa, ..., w; T, we have, S . X
{w, wy 5T expressed in this form. There exists a weight-threshold vector,
. (wy,ws,...,w; T), for f since it is a threshold function.
Zwkwk ST 4 6= f =1, ©) If any qf the.a:Hj, je{1,2,...,k}, equa]sl, h equalsl.
P Otherwise h is equal tof. If we set the weightv;; ; of z;;
! to a value no less thafi + 6,,,, for examplew;4; = T+ don,
Zwkl‘k <T =655 = f=0. (4) then the output isl whenz,; is 1. When it and some
1 otherz;, i € {1,2,...,1}, equall, the output is alsd. This

is because we have represented the function in positive unate
Note that Equations (3) and (4) repres@lntnequa”ties for all form, thereby guarantEEing that all the WE|ghtS and threshold

value combinations of variables,, z,, ..., z;. By replacing Of f are positive [17]. When all of;,; equal0, h equalsf.
x; with Z;, we obtain the following2!~! inequalities: Thus, a weight-threshold vector faralways exists. Therefore,
h is a threshold function. [ |
I To illustrate Theorem 2, letf;(x1,29,23) = x122 V
Z wpxy + wiZj > T+ Son = g = 1, (5) z173. Becausef; is a threshold function with weight-
k=1 kti threshold vector2,1,1;3), hy(z1, 22, Z3, T4, x5) = T122 V
l x123 V x4 V x5 IS also a threshold function with weight-
Z wyay +wid; <T — 08,55 = g=0. (6) threshold vector2, 1,1, 3,3;3). Taking another example, let

k=1 ki fa(x1,22) = x1Zo. First, we represenf, in positive unate
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»
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Fig. 4. Flow diagram providing an overview of our threshold logic synthesis methodology.

form as go(z1,y2) = x1y2, Wherey, = . Sincegs is A. Overview of the Method
a threshold function with weight-threshold vectét, 1;2),
ho(x1,y2,23) = g2(w1,92) V 23 = m1y2 V 23 is also a
threshold function with weight-threshold vectdt, 1, 2;2).

Fig. 4 gives an overview of the main steps that com-
prise our methodology. The input to our methodology is
) i ; - an algebraically-factored multi-output combinational Boolean
Sinceys = 1 — a3, 2173 V a3 is also a threshold function hayyork 7, and its output is a functionally equivalent thresh-
with weight-threshold vectofl, —1,2;1). old network,G;. An algebraically-factored Boolean circuit is
V. METHODOLOGY AND IMPLEMENTATION used as an input because its nodes are more likely to be unate

We discuss our multi-level threshold logic synthesi@"d hence possibly threshold functions. The user can specify
methodology and its implementation details in this sectiofhe famn restriction and defect tolerances for the threshold
The variables that are used in our flow diagram and algorith/&tes in the network. , o
are defined as follows: Two methods are used for synthesis as shown in Fig. 4. In
G A Boolean network. Mgthod 1, the synthesis algorithm begins by processing each
IG|  The number of nodes in networ&. primary output of Boolea_n network. First, the node repre-
Gsoto The threshold sub-network obtained by one-to—or‘f)eemIng a primary output is collaps_ed. If the node_ represents a

mapping. Inate function, |t_ is split into multiple ngdes which are then
G.. The threshold sub-network obtained by our thresho%rocessed recursively. If the unate node is a threshold function,
‘ It'is saved in the threshold network and the fanins of the node

synthesis Method 1. . . e
y are processed recursively. Otherwise, the unate node is first

g ggt 8: ?arll'\mostryng]dp:stsir:nngf\/tvvg(;é? split i_nto two nodes. _If either of the_ spli_t_noqles is a thresr_lold
n A node in networka. function, '_I'heorem_2 isused as a S|mpl|f|cat|on s_te_p. If nelth(_ar
F,  Set of fanins of node. of t.h(.a split no_des is a thres_hold function, the original nOQe is
2y The (") fanin of a node. split into multiple nodes which are then processed recursively.
r(f) Fanin restriction on a threshold gate. The synthesis algorithm by Method 1 terminates when all the
5 Array of nodes. nodes in networkG are mapped into threshold nodes.

K, Set of cubes of node. In Method 2, one-to-one mapping is first performed on
C.,  Theit" cube of noden. network G After that, starting from each primary output,
W/t The weight-threshold vectotwy, ws, . . ., wy; T). we obtain the subnetworks. These subnetworks consist of
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Require: noden, r > 0 stops once this fanin is a fanout node. This implicitly helps to
i lﬁFﬂ zpﬁttze{)‘y one-to-one mapping method maintain some of the original network structure and provides

3. returnd // array of split nodes guidance for better network decomposition. The benefit is
n «—n profound when the network contains many fanout nodes.

if not all fanins of node: are primary inputghen

o W*}g‘ﬁ Lﬁg}ﬁaﬁiﬂg of noden’ do C. Formulating Synthesis as an ILP Problem
o {]f 'af:;e']tjhe/( p;lgasrytrl]ggut nor fanout node Once a node has been collapsed into a unate function,
substitute the function af into n’ it is necessary to determine whether it is threshold or not.
if [E,/[ > r then o _ , This can be done by formulating the problem as a linear
12: gre‘;k“ndo the substitution of into ~ programming (LP) problem and then solving it. However, in
/1 if all fanins are primary inputs or fanout nodes our implementation, we solve this problem by casting it in
15: if vbfeg]anl' xz € (PUS) then an ILP formulation. This yields integer weights and threshold

which are easier to implement with RTD-HFETs (an LP
formulation would, in general, yield non-integer weights and
threshold). There are at mogt distinct cubes for a logic
function of [ variables and this leads & inequalities which
represent the constraints (note thatannot exceed the fanin
restrictionr, and hence is not a large number). However, many
of these constraints are redundant. We have devised a simple
method to eliminate redundant constraints which makes the
ILP formulation smaller and possibly faster to solve (A similar
method based on extremal vectors can be found in [16]). The
Fig. 6. Example network to demonstrate node collapsing on output  g|gorithm for formulating the ILP problem and determining the
weight-threshold vector for a threshold function is shown in

AND and OR gates only, and the number of primary inpug'g' 7. Even though in the worst case an ILP problem may take

still satisfy the fanin restriction. Threshold synthesis is th enxponennal time to solve, in practice it is efficiently _solved
e[kt)ecause of small values éffor each threshold gate in the
performed on each subnetwork by Method 1. If the resu atwork

ing threshold subnetwork has fewer threshold gates than {P]el'he alaorithm is best demonstrated by an examole. Given
subnetwork obtained by the one-to-one mapping method, we 9 y pie.

choose this subnetwork. Otherwise, we choose the one-to-gnémate function.f(z1, s, ..., z), if it contains variables

mapped subnetwork. The synthesis algorithm by Methodqgnegatwe phase, we first transform these variables into

. ofher variables in positive phase using variable substitution.
terminates when all the subnetworks have been process& . _ _ . .
onsiderf = x1Z, V 13, Wherexy andzg are in negative

Finally, we compare the two threshold networks obtained b S o

. .phase. By replacing, with y, and z3 with y3, we get the
these two methods, and pick the smaller one as the fi Al iive unate function — Ve The ILP formulation
threshold network. We describe each step in detail in thie 9= T1y2 V T1Ys.

. . or g is as follows:
following subsections. g

returnn’ // collapsed node

Fig. 5. The node collapsing algorithm.

B. Node Collapsing minimize : wy +ws + w3z + T 9)

The node collapsing algorithm is shown in Fig. 5. Given a subject to: w1 +wa 2 T + on (10)
noden, if its number of fanins exceeds the fanin restriction, w1 +ws > T + 6on (11)
we splitn by the one-to-one mapping method. Otherwise, we wy + w3z <T —off (12)
keep collapsing it until one of the following conditions is met: wy <T — 8,57 (13)

« All fanins of n are primary inputs and/or fanout nodes;

o The fanin ofn exceeds .

To demonstrate node collapsing, consider the network withThe objective function for this ILP problem is defined as
output nodef in Fig. 6. Here,f = n’ = ny V ng, r is set the summation of the weights and threshold. Sigcdas
to 4, |Fo| = 2, Fy = {n1,ne}, P = {x1,29,23,24}, and been transformed into a positive unate form, ohlgnd don’t
S = {ns}. Since the inputs tg’ are not primary inputs and care ) will appear in its ON-set cubes. The ON-set cubes
|F,./| is less thanr, we first collapse om; togetf =n'= of gare(1 1 —) and(1 — 1), wherex;, y2, and ys is
zin3 V ne. Now, |F,/| = 3 and Fy = {z1,n2,n3}. Since the variable sequence. To transform the ON-set cubes into
|F,.v| is still less thanr, we continue by collapsing on, to inequalities, thei’" 1 value corresponds to weight;. We
get f = n' = z1n3 V n3zs. Now, we cannot collapse; and need not consider don't cares in the inequalities, because they
x4 Since they are primary inputs. Furthermore, observing thegpresent redundancies in For example, the ON-set cube
ng is a fanout node, we do not collapse it either. Thus, tHeé 1 —) corresponds to two inequalities, namely, + wq >
final result after collapsing i = x1n3 V n3zy. T + by, andwy +we + w3 > T + d,,. The second inequality

As demonstrated in the example, node sharing is preseniededundant because once the first inequality is satisfied, the
during node collapsing because the collapsing on one fai@cond inequality is automatically satisfied as well. Similarly,

w; > 0, integer, 1 =1,2,3. (14)
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Require: positive unate node Require: unate noden, r > 0
np <—n if all variables appear ondéen // condition 1
ny «— invertn n=mn1Vne S.t.|Kn,| = |Kn,
3: for ¢ =1 to |F},| do // objective function 3: else ifVe,c € Ky, variablex; € c then // conditions2 and4
print “w;+" n1 < x; // assuming correct phase
print “T" ng <« factorn w.r.t. nq
6: for i =1 to |K,,| do // ON-set inequalities 6: else// condition3
for j =1 to |F,| do x; « most frequently appearing variable
if z; € Cn,, then ny«— Y ¢, €EcNc€ Ky
9: print “w;+" 90 mae) c,cagniNa €Ky )
print “—8o, > T if n1 is a threshold functiorthen // assuming Kn, | > [Kp, |
for i =1 to |K,, | do // OFF-set inequalities combine nodes according to Theorem 2
12 for j=11n |F,| do 12: ¥ <«=n1Vna )
if x; ¢ Cy,. then else ifny is a threshold functiothen
print “w;+" combine nodes according to Theorem 2
15: _print “dopp < 1" 15: elsve<_ ny VvV ng
W <~ solve ILP problem k — (|[Kn| <7)?|Ky|:r /I pick the smaller one
if W # ) then k
18: for j=11in |F,| do 18: ¥« Y m; Il splitn into k smaller nodes
if z; in negative phase in then =1 .
Il subtract weight from original threshold return< // array of split nodes
21: WIT) «— W[T] — W]w;] )
Wlw;] — —Wfw;] I negate the weight Fig. 8. The unate node splitting algorithm.
return W /I weight-threshold vector
24 elsrgtum@ 1l o solution exists cubes. When a variable appears in all the cubes, we split the

node into two by factoring this variable out of the node. If the
Fig. 7. The ILP formulation algorithm. above two conditions are not met, we split the node using the
most frequently appearing variable. For example, giues:
w1 +wsg > T + 6,,, represents the constraint imposed by the;zs V 2123 V 2425, we split onz; to getny = 124 V 2123
cube(1 — 1). andns = z4x5, With n = nq1 V neo. This last condition reduces
To compute the OFF-set cubes gf we simply invertg the likelihood of a function being non-threshold because there
to getg. The ON-set cubes aof correspond to the OFF-setare fewer candidate variables to choose from in the split nodes
cubes ofy. Becausg is always in negative unate form, orlly to prevent the condition in Theorem 1 from being satisfied.
and — appear in its ON-set cubes. Continuing with the earlier Once a node has been split, we choose the larger nede (
example, we invery to getg = z; V 273 after simplification. the one with more cubes) and check that node to see if it is
The ON-set cubes fgrare(0 — —) and(— 0 0). For the OFF- a threshold function. If it is, we apply Theorem 2. Looking
set inequalities, theé'” don’t care corresponds to weight,. at the last example, since; = z1xz2 V x123 IS a threshold
Therefore, the ON-set inequalities fparew,+ws < T—d.5y  function with weight-threshold vectde, 1, 1; 3), functionn =
andw; < T — do5f. Thus, the OFF-set inequalities far x5,V x,23Vn, is also a threshold function with the weight-
arewy +wz < T — b5y andw; < T — .55, as given in threshold vector2, 1, 1, 3; 3). Now, ns is processed by further
Equations (12) and (13). collapsing, threshold checking, or splitting. If neither of the
By requiring the variables to be integer-valugd( con- split nodes is a threshold function, the original node is split
straint (14)), this ILP problem has an optimal solution. Thito £ smaller nodes, wherg is the smaller ofr and |K,|.
weight-threshold vector foy is (2,1,1;3). Using the rela- After splitting, n = ny V ny V --- V ng, which is a threshold
tionship mentioned in Section 1V, the final weight-thresholéunction with weight-threshold vectdt, 1, ..., 1; 1). The split
vector for f is (2, -1, —1;1). nodes,n;, i € {1,2,...,k}, are then processed recursively.

D. Unate Node Splitting and Combining E. Binate Node Splitting

If the ILP problem for noden does not have a solution, o o
the node must be split into multiple nodes to increase the!f @ Noden is binate, we split it into at most nodes where
likelihood of the split nodes being threshold functions. Fig. & 1S the smaller of- and|K,|. The splitting stops when a unate
outlines the splitting process of a unate node. How a undigde is generated. The algorithm for binate node splitting is

node is split is contingent upon one of the following condSnoWn in Fig. 9. We first split the binate node on the most
tions: frequently appearing binate variable. If the split nodes are

binate, we repeat the process. Otherwise, we stop splitting.
To demonstrate binate splitting, consides Zyx4V zox3V

ﬁéx4x5, wherer is five and|K,,| is three. This node will be

split into at most three nodes. First it is split on the binate

1) All of the variables appear exactly once.
2) Some of the variables appear in all the cubes.
3) The most frequent variable(s) does not appear in all t

cubes. . _ _
4) A tie between the most frequent variables is brokeff1able, 2, 10 getny = Iyzq V 2yxs andn, = Toxrs. Be-
randomly causen; andns are unate nodes, we stop splitting. Thuds

represented as = n, Vno, which is a threshold function with

If all the variables appear only once, we simply split the nodgejght-threshold vectofl, 1; 1). Threshold network synthesis

into two, with each node containing roughly equal number @fqceeds recursively by processing each of the split nodes.
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Require: binate noden, r > 0
k — (|[Kn| <7)? Ky, : r Il pick the smaller one
U «— n /[ split on binate variables when needed CLK 1
3: while |§] # k A 3p € ¥, s.t.p has binate variable; do

ny < p\xq,...
ng <—p
6: U« {U—p}V{ni,na}
if Ip € ¥, s.t.p Is a unate nodé¢hen
break
9: returnv // array of split nodes

Zi,...) Il assign the resulting split nodes to vectg

Fig. 9. The binate node splitting algorithm.
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Fig. 11. Four-phase clocking for MOBILE circuits.

H. Technology Mapping

Once a threshold network has been synthesized by TELS, it
can be mapped onto a target nanoscale device that is capable of
implementing threshold logic. In this work, MOBILEs, which
were introduced in Section |, are the target device.

l . ) ) A MOBILE is a self-latching RTD-HFET threshold gate,
thprint lthpr/nt_ stats l thsim b . . | d | h h | k . h h Th
Sosthori e oS ecause its output is valid only when the clock is high. The
A — - MOBILE clpck has four phases as shown in Fig. 11. During
vt I A Output: 1 the evaluation phase, the output of a gate is computed. In
Ri7Tj-2a-tibot; | [folovels 3 etreim 1010 the hold (i.e, self-latching) phase, the result is valid. In the
[217]=ab; area: resetphase, the load capacitance is discharged and the gate
18] f;0= fid=-1; | [[OOKTAMSESEM ] jouput 0 returns to the monostable mode of operation. Finally, in the
(218 =cd sis> . wait phase, the inputs of the gate are loaded with the results
Sis>

obtained from the predecessor gate.

In order to make the MOBILE-based threshold network
function correctly under four-phase clocking, we have to make
sure that all the input signals of any embedded threshold gate
arrive in the same clock phase. We have implemented this by
inserting threshold buffers, wherever needed, in the network.

In this subsection, we perform the complexity analysis of thgyppose all primary input signals arrive in the same clock
algorithms in our threshold network synthesis methodologyhase. We examine the structure of the threshold network from
The complexity of the node collapsing algorithm @(1), the primary inputs to primary outputs. If a node fans out to
because the total number of operations performed by tggyeral nodes and those fanout nodes are not at the same level
algorithm is proportional to the fanin restriction, which isf the network, we insert buffers to make sure that all the input
constant. The complexity of both the unate and binate noggynals of a node arrive in the same clock phase. An example
splitting algorithms isO(| F, |- [ Ky|). Even though ILP is NP- s given in Fig. 12. The network in Fig. 12(a) implements a
complete, the ILP instances being solved are small becaysg adder, with logic functionss = ¢,a V &b V ¢,c; V abe;
the number of inputs of the threshold gate being synthesizggg co = abV ac; V be;. We observe that inputs, b, ¢; and
cannot exceed the fanin restriction. Even then, if the ”_8) of nodes do not arrive in the same clock phase_ After we
solver cannot find the solution in a reasonable amount gkert three buffers into the network, as shown in Fig. 12(b), all
time, it declares the problem as infeasible. If that happengput signals of each node in this network arrive in the same
the splitting algorithms in our methodology create smallefiock phase, thus making the network function correctly. A

problems for the ILP solver to solve. In this way, the thresholgioBILE implementation of a threshold buffer and its symbol
logic synthesis problem can be solved efficiently in practicge shown in Fig. 12(c).

with our methodology.

Fig. 10. The framework of the threshold logic synthesis tool: TELS.

F. Complexity Analysis

G. Implementation VI. EXPERIMENTAL RESULTS

We implemented the proposed methodology in a tool calledWe present our experimental results in this section. The
ThrEshold Logic Synthesizer (TELS) which has been int@xperiments were conducted on a 2.4 GHz Dell PowerEdge
grated within SIS. This is the first multi-output multi-levelPentium IV machine with 768MB RAM running Redhat Linux
threshold network synthesis tool to the best of our knowledg®0. We ran examples belonging to the MCNC benchmark suite
The package currently consists of approximat&lp00 lines through TELS. All the synthesized networks were simulated
of C code. The framework of TELS is shown in Fig. 10.  for functional correctness to validate our methodology.
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G0~

[ B. Trend of Threshold Gate Count with Change of Fanin
threshold RESII’ICtIOH

buffer
Fig. 13 demonstrates the trend in the total number of thresh-
old gates required for thpair benchmark as the maximum
fanin restriction is relaxed from three to ten. The gate count
reduction for the one-to-one mapping case is larger than the
N\ ok gate count reduction for threshold synthesis case as the fanin
AD — restriction is relaxed from six to ten. This is because with a

¥ Load ) o ) .
W= larger allowed fanin, it is possible to obtain a Boolean network

a&_ﬁ . a ( C . with fewer gates, in general. However, there is no significant
T reduction in the number of threshold gates for TELS. This
= T is understandable because as the allowed fanin increases, the
> Driver likelihood of a function being threshold decreases. As reported
in [16], all positive unate functions of three or fewer variables
are threshold functions. However, 17 out of 20 and only 92
(c) A MOBILE implementation of a threshold buffer and its out of 168 positive unate functions of four and five variables,
symbol. respectively, are threshold functions, not considering variable
permutations. Thus, we can see that with increasing allowed
fanin, the percentage of functions that are threshold decreases
drastically.

I

(b) Network structure after inserting buffers.

f

|

Fig. 12. Example of threshold network technology mapping.

A. Threshold Gate Count and Interconnect C. Distribution of Weights and Thresholds

Table | lists the results obtained by TELS for the 56 we performed experiments to see how the values of the
benchmarks, with the fanin restriction of a gate set to Sigeights and thresholds of the threshold gates in the networks
In this table, one-to-one mapping refers to converting eaghnthesized by TELS are distributed. If there exist some
primitive gate in the algebraically-factored network into geights or thresholds whose absolute values are much larger
threshold gate (the inverters, if any, are absorbed into theyn others, the threshold network will not be well-balanced.
corresponding threshold gate by changing the weight apge would like to avoid this phenomenon, because it may
threshold, as was pointed out before). The threshold netwodgyit in manufacturing problems. Fig. 14 shows that all
synthesis results were obtained by TELS. The number gfg weights and threshold of thealu benchmark assume
interconnects in the network was calculated by summingasonably small integer values. Another fact worth noticing
up the number of fanins of all the threshold gates in thg that more weights and threshold take positive values than
network. % R1 and %R2 represent the gate count reductiomegative values. This is because there are more positive unate

and interconnect count reduction in the threshold netwogriaples than negative unate variables in the synthesized
obtained by TELS compared to the threshold network obtainggeshold network.

by one-to-one mapping, respectively. . o . )

TELS takes less than one second to synthesize mostDbf Parametric Variations in Weights
the benchmarks. A few large benchmarks need about three t®We also performed experiments to gauge the impact of
four minutes for synthesis. Comparing the results, we can ge@rametric variations in the input weights on circuit func-
that up t080.0% gate count reduction arit).6% interconnect tionality. We variedd,,, from zero to two while keeping
count reduction is possible, with the average b&iag% and §,;, fixed at one. The disturbed valug’ was computed as
12.6%, respectively. w' =w+vxU(-0.5,0.5), wherew is the original valuey is
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TABLE |
THRESHOLDNETWORK SYNTHESIS RESULTS FORFANIN RESTRICTION OFSIX

One-to-one mapping Threshold network synthesis

Benchmark Inputs | Outputs | Gates | Levels [ Interconnect | Gates | Levels | Interconnect | %R1 | %R2
bl 3 4 10 4 18 8 3 16 20.0 11.1
cmé2a 4 10 13 3 34 13 3 34 0 0

decod 5 16 24 3 52 24 3 52 0 0

cm82a 5 3 18 5 50 12 4 38 333 24.0
majority 5 1 5 3 17 1 2 5 80.0 70.6
parity 16 1 45 9 90 45 9 90 0 0

z4ml 7 4 39 8 110 19 5 64 51.3 41.8
f51m 8 8 101 8 296 82 8 266 18.8 10.1
9symml 9 1 141 10 446 110 9 412 22.0 7.6
alu2 10 6 253 27 795 197 25 715 221 10.1
X2 10 7 20 5 73 15 4 67 25.0 8.2
cml52a 11 1 13 4 44 11 4 42 15.4 4.6
cm85a 11 3 26 5 108 14 5 72 46.2 33.3
cml5la 12 2 14 6 47 12 5 45 14.3 4.3
alud 14 8 517 28 1559 410 23 1407 20.7 9.8
cml62a 14 5 39 7 109 26 8 88 33.3 19.3
cu 14 11 31 6 87 24 4 76 22.6 12.7
cml163a 16 5 40 6 107 25 6 84 37.5 21.5
cmb 16 4 33 7 81 27 6 71 18.2 12.4
pml 16 13 25 4 80 23 4 76 8.0 5.0
tcon 17 16 32 3 56 32 3 56 0 0

pcle 19 9 42 6 122 35 6 109 16.7 10.7
sct 19 15 54 6 140 38 5 115 29.6 17.9
cc 21 20 49 6 122 35 6 91 28.6 25.4
cml50a 21 1 25 5 81 21 4 77 16.0 4.9
cordic 23 2 61 9 171 49 7 155 19.7 9.4
ttt2 24 21 127 7 376 100 6 327 21.3 13.0
il 25 16 27 5 68 23 5 63 14.8 7.4
lal 26 19 67 7 186 54 7 168 19.4 9.7
pcler8 27 17 50 7 146 47 7 143 6.0 2.1
frgl 28 3 97 12 293 59 9 233 39.2 20.5
c8 28 18 109 8 281 85 7 228 22.0 18.9
comp 32 3 89 9 315 83 8 311 6.7 1.3
my_adder 33 17 160 34 416 96 18 304 40.0 26.9
terml 34 10 278 11 761 226 10 683 18.7 10.3
count 35 16 91 12 261 79 12 241 13.2 7.7
unreg 36 16 66 4 150 50 5 134 24.2 10.7
cht 47 36 119 5 240 82 5 202 311 15.8
apex7 49 37 171 10 442 118 9 364 31.0 17.7
x1 51 35 293 8 866 203 7 731 30.7 15.6
dalu 75 16 1159 24 3265 810 23 2579 30.1 21.0
example2 85 66 226 9 551 182 8 489 195 11.3
i9 88 63 341 9 890 275 8 817 194 8.2
x4 94 71 264 7 696 189 8 562 28.4 19.3
i3 132 6 170 6 484 158 6 464 7.1 4.1
i5 133 66 132 19 264 66 6 260 50.0 1.5
i8 133 81 681 11 1915 570 10 1790 16.3 6.5
apex6 135 99 543 12 1348 396 12 1169 27.1 13.3
x3 135 99 660 9 1878 441 7 1514 33.2 19.4
i6 138 67 277 5 659 276 5 658 0.4 0.2
pair 173 137 1199 14 3438 907 12 2966 24.4 13.7
i4 192 6 98 6 360 74 5 336 24.5 6.7
i7 199 67 340 5 849 304 5 813 10.6 4.2
i2 201 1 244 7 766 198 7 694 18.9 9.4
des 256 245 2443 15 5743 1920 16 5180 21.4 9.8
i10 257 224 2282 39 6202 1817 35 5893 20.4 5.0

the variation multiplier and/(—0.5,0.5) is a random variable VIl. CONCLUSIONS

uniformly distributed between-0.5 and0.5. A circuit fails if
there exists any input vector for which the network synthesizedin this paper, we introduced the first comprehensive thresh-
by TELS generates a wrong output value under the disturbeld network synthesis methodology for multi-output multi-
weights during simulation. The failure fraction is defined &agvel threshold networks starting from Boolean descriptions.
the percentage of benchmarks that failed to pass simulatidie algorithm in our methodology is recursive in nature and is
The results shown in Fig. 15 demonstrate thaigsncreases, based upon efficient heuristics that partition a logic function, if
the failure rate decreases. This is because the network is mioie determined to be non-threshold, using an ILP formulation.
robust. Any fanout that occurs in the initial network is preserved in the
threshold network. We have implemented the methodology on
top of an existing logic synthesis tool, and validated it with
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